Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 11—November 2023
Research

Micro‒Global Positioning Systems for Identifying Nightly Opportunities for Marburg Virus Spillover to Humans by Egyptian Rousette Bats

Brian R. AmmanComments to Author , Amy J. Schuh, Gloria Akurut, Kilama Kamugisha, Dianah Namanya, Tara K. Sealy, James C. Graziano, Eric Enyel, Emily A. Wright, Stephen Balinandi, Julius J. Lutwama, Rebekah C. Kading, Patrick Atimnedi, and Jonathan S. Towner
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (B.R. Amman, A.J. Schuh, T.K. Sealy, J.C. Graziano, J.S. Towner); Uganda Wildlife Authority, Kampala, Uganda (G. Akarut, K. Kamugisha, D. Namanya, E. Enyel, P. Atimnedi); Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee, USA (E.A. Wright); Uganda Virus Research Institute, Entebbe, Uganda (S. Balinandi, J.J. Lutwama); Colorado State University, Fort Collins, Colorado, USA (R.C. Kading)

Main Article

Figure 1

Distribution of Rousettus aegyptiacus bats in Africa (dark gray shading), showing locations of known Marburg virus disease spillover events into humans (red dots) and Egyptian rousette bats (R. aegyptiacus) that previously tested positive for Marburg or Ravn viruses (yellow dots). The bat distribution was adapted from the International Union for Conservation of Nature and Natural Resources Red List of Threatened and Endangered Species distribution maps (https://www.iucnredlist.org), except for the shaded area in Sierra Leone indicated by the yellow dot and black arrow, which represents a range extension for Egyptian rousette bats not shown on the Red List website (7).

Figure 1. Distribution of Rousettus aegyptiacus bats in Africa (dark gray shading), showing locations of known Marburg virus disease spillover events into humans (red dots) and Egyptian rousette bats (R. aegyptiacus) that previously tested positive for Marburg or Ravn viruses (yellow dots). The bat distribution was adapted from the International Union for Conservation of Nature and Natural Resources Red List of Threatened and Endangered Species distribution maps (https://www.iucnredlist.org), except for the shaded area in Sierra Leone indicated by the yellow dot and black arrow, which represents a range extension for Egyptian rousette bats not shown on the Red List website (7).

Main Article

References
  1. Luby  JP, Sanders  CV. Green monkey disease (“Marburg virus” disease): a new zoonosis. Ann Intern Med. 1969;71:65760. DOIPubMedGoogle Scholar
  2. Siegert  R, Shu  HL, Slenczka  HL, Peters  D, Müller  G. The aetiology of an unknown human infection transmitted by monkeys (preliminary communication). Ger Med Mon. 1968;13:12.PubMedGoogle Scholar
  3. Centers for Disease Control and Prevention. Marburg disease outbreaks. February 23, 2023 [cited 2023 10 Nov]. https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html
  4. Adjemian  J, Farnon  EC, Tschioko  F, Wamala  JF, Byaruhanga  E, Bwire  GS, et al. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J Infect Dis. 2011;204(Suppl 3):S7969. DOIPubMedGoogle Scholar
  5. Bausch  DG, Nichol  ST, Muyembe-Tamfum  JJ, Borchert  M, Rollin  PE, Sleurs  H, et al.; International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of the Congo. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N Engl J Med. 2006;355:90919. DOIPubMedGoogle Scholar
  6. Timen  A, Koopmans  MP, Vossen  AC, van Doornum  GJ, Günther  S, van den Berkmortel  F, et al. Response to imported case of Marburg hemorrhagic fever, the Netherland. Emerg Infect Dis. 2009;15:11715. DOIPubMedGoogle Scholar
  7. Amman  BR, Bird  BH, Bakarr  IA, Bangura  J, Schuh  AJ, Johnny  J, et al. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat Commun. 2020;11:510. DOIPubMedGoogle Scholar
  8. Amman  BR, Carroll  SA, Reed  ZD, Sealy  TK, Balinandi  S, Swanepoel  R, et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8:e1002877. DOIPubMedGoogle Scholar
  9. Kajihara  M, Hang’ombe  BM, Changula  K, Harima  H, Isono  M, Okuya  K, et al. Marburg virus in Egyptian fruit bats, Zambia. Emerg Infect Dis. 2019;25:157780. DOIPubMedGoogle Scholar
  10. Pawęska  JT, Jansen van Vuren  P, Kemp  A, Storm  N, Grobbelaar  AA, Wiley  MR, et al. Marburg Virus infection in Egyptian Rousette bats, South Africa, 2013–2014. Emerg Infect Dis. 2018;24:11347. DOIPubMedGoogle Scholar
  11. Pourrut  X, Souris  M, Towner  JS, Rollin  PE, Nichol  ST, Gonzalez  JP, et al. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis. 2009;9:159. DOIPubMedGoogle Scholar
  12. Swanepoel  R, Smit  SB, Rollin  PE, Formenty  P, Leman  PA, Kemp  A, et al.; International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of Congo. Studies of reservoir hosts for Marburg virus. Emerg Infect Dis. 2007;13:184751. DOIPubMedGoogle Scholar
  13. Towner  JS, Amman  BR, Sealy  TK, Carroll  SA, Comer  JA, Kemp  A, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5:e1000536. DOIPubMedGoogle Scholar
  14. Towner  JS, Pourrut  X, Albariño  CG, Nkogue  CN, Bird  BH, Grard  G, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007;2:e764. DOIPubMedGoogle Scholar
  15. Makenov  MT, Boumbaly  S, Tolno  FR, Sacko  N, N’Fatoma  LT, Mansare  O, et al. Marburg virus in Egyptian Rousettus bats in Guinea: Investigation of Marburg virus outbreak origin in 2021. PLoS Negl Trop Dis. 2023;17:e0011279. DOIPubMedGoogle Scholar
  16. Amman  BR, Jones  ME, Sealy  TK, Uebelhoer  LS, Schuh  AJ, Bird  BH, et al. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J Wildl Dis. 2015;51:11324. DOIPubMedGoogle Scholar
  17. Pawęska  JT, Storm  N, Markotter  W, Di Paola  N, Wiley  MR, Palacios  G, et al. Shedding of Marburg virus in naturally infected Egyptian Rousette bats, South Africa, 2017. Emerg Infect Dis. 2020;26:30515. DOIPubMedGoogle Scholar
  18. Schuh  AJ, Amman  BR, Jones  ME, Sealy  TK, Uebelhoer  LS, Spengler  JR, et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun. 2017;8:14446. DOIPubMedGoogle Scholar
  19. Belanov  EF, Muntianov  VP, Kriuk  VD, Sokolov  AV, Bormotov  NI, P’iankov  OV, et al. [Survival of Marburg virus infectivity on contaminated surfaces and in aerosols] [in Russian]. Vopr Virusol. 1996;41:324.PubMedGoogle Scholar
  20. Amman  BR, Schuh  AJ, Albariño  CG, Towner  JS. Marburg virus persistence on fruit as a plausible route of bat to primate filovirus transmission. Viruses. 2021;13:2394. DOIPubMedGoogle Scholar
  21. Jacobsen  NH, Du Plessis  E. Observations on the ecology and biology of the Cape fruit bat Rousettus aegyptiacus leachi in the Eastern Transvaal. S Afr J Sci. 1976;72:2703.
  22. Kwiecinski  GG, Griffiths  TA. Rousettus egyptaicus (aegyptaicus). Mamm Species. 1999;611:19. DOIGoogle Scholar
  23. Amman  BR, Schuh  AJ, Towner  JS. Ebola virus field sample collection. In: Hoenen T, Groseth A, editors. Methods in molecular biology. Clifton (NJ): Humana Press; 2017. p. 373–93.
  24. Amman  BR, Cossaboom  CM, Wendling  NM, Harvey  RR, Rettler  H, Taylor  D, et al. GPS tracking of free-roaming cats (Felis catus) on SARS-CoV-2-infected mink farms in Utah. Viruses. 2022;14:2131. DOIPubMedGoogle Scholar
  25. Amman  BR, Manangan  AP, Flietstra  TD, Calisher  CH, Carroll  DS, Wagoner  KD, et al. Association between movement and Sin Nombre virus (Bunyaviridae: Hantavirus) infection in North American deermice (Peromyscus maniculatus) in Colorado. J Wildl Dis. 2013;49:13242. DOIPubMedGoogle Scholar
  26. Newton-Fisher  NE. The home range of the Sonso community of chimpanzees from the Budongo Forest, Uganda. Afr Ecol. 2003;41:1506. DOIGoogle Scholar
  27. Ribble  DO, Wurtz  AE, McConnell  EK, Buegge  JJ, Welch  KC Jr. A comparison of home ranges of two species of Peromyscus using trapping and radiotelemetry data. J Mammal. 2002;83:2606. DOIGoogle Scholar
  28. Centers for Disease Control and Prevention (CDC). Imported case of Marburg hemorrhagic fever - Colorado, 2008. MMWR Morb Mortal Wkly Rep. 2009;58:137781.PubMedGoogle Scholar
  29. Pan  Y, Zhang  W, Cui  L, Hua  X, Wang  M, Zeng  Q. Reston virus in domestic pigs in China. Arch Virol. 2014;159:112932. DOIPubMedGoogle Scholar
  30. Kobinger  GP, Leung  A, Neufeld  J, Richardson  JS, Falzarano  D, Smith  G, et al. Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs. J Infect Dis. 2011;204:2008. DOIPubMedGoogle Scholar
  31. Paweska  JT, Jansen van Vuren  P, Fenton  KA, Graves  K, Grobbelaar  AA, Moolla  N, et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J Infect Dis. 2015;212(Suppl 2):S10918. DOIPubMedGoogle Scholar
  32. Amman  BR, Swanepoel  R, Nichol  ST, Towner  JS. Ecology of filoviruses. In: Mühlberger E. Towner J., editors. Current topics in microbiology and immunology. New York: Springer; 2017. p. 23–61.
  33. Judson  SD, Fischer  R, Judson  A, Munster  VJ. Ecological contexts of index cases and spillover events of different ebolaviruses. PLoS Pathog. 2016;12:e1005780. DOIPubMedGoogle Scholar
  34. Weyer  J, Grobbelaar  A, Blumberg  L. Ebola virus disease: history, epidemiology and outbreaks. Curr Infect Dis Rep. 2015;17:480. DOIPubMedGoogle Scholar
  35. Barrette  RW, Metwally  SA, Rowland  JM, Xu  L, Zaki  SR, Nichol  ST, et al. Discovery of swine as a host for the Reston ebolavirus. Science. 2009;325:2046. DOIPubMedGoogle Scholar
  36. Chua  KB, Goh  KJ, Wong  KT, Kamarulzaman  A, Tan  PS, Ksiazek  TG, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet. 1999;354:12579. DOIPubMedGoogle Scholar
  37. Jahrling  PB, Geisbert  TW, Dalgard  DW, Johnson  ED, Ksiazek  TG, Hall  WC, et al. Preliminary report: isolation of Ebola virus from monkeys imported to USA. Lancet. 1990;335:5025. DOIPubMedGoogle Scholar
  38. Chua  KB, Chua  BH, Wang  CW. Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malays J Pathol. 2002;24:1521.PubMedGoogle Scholar
  39. Goldshtein  A, Harten  L, Yovel  Y. Mother bats facilitate pup navigation learning. Curr Biol. 2022;32:350360.e4. DOIPubMedGoogle Scholar
  40. Gibb  R, Redding  DW, Chin  KQ, Donnelly  CA, Blackburn  TM, Newbold  T, et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature. 2020;584:398402. DOIPubMedGoogle Scholar
  41. Keesing  F, Ostfeld  RS. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc Natl Acad Sci U S A. 2021;118:e2023540118. DOIPubMedGoogle Scholar
  42. Letko  M, Seifert  SN, Olival  KJ, Plowright  RK, Munster  VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 2020;18:46171. DOIPubMedGoogle Scholar
  43. Olival  KJ, Hosseini  PR, Zambrana-Torrelio  C, Ross  N, Bogich  TL, Daszak  P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:64650. DOIPubMedGoogle Scholar
  44. Amman  BR, Nyakarahuka  L, McElroy  AK, Dodd  KA, Sealy  TK, Schuh  AJ, et al. Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg Infect Dis. 2014;20:17614. DOIPubMedGoogle Scholar
  45. Plowright  RK, Eby  P, Hudson  PJ, Smith  IL, Westcott  D, Bryden  WL, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci. 2015;282:20142124. DOIPubMedGoogle Scholar
  46. Andersen  KG, Rambaut  A, Lipkin  WI, Holmes  EC, Garry  RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:4502. DOIPubMedGoogle Scholar

Main Article

Page created: September 12, 2023
Page updated: October 23, 2023
Page reviewed: October 23, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external