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DISPATCHES

Gabriel Rainisch, Manjunath Shankar,  
Michael Wellman, Toby Merlin, Martin I. Meltzer

To explain the spread of the 2014 Ebola epidemic in West 
Africa, and thus help with response planning, we analyzed 
publicly available data. We found that the risk for infection in 
an area can be predicted by case counts, population data, 
and distances between affected and nonaffected areas.

The first cases of the 2014 Ebola epidemic in West Af-
rica (49 cases in Guinea) were reported on March 21 

(1). By November 4, the World Health Organization had 
reported 13,241 cases in the 3 primarily stricken countries 
of Guinea, Sierra Leone, and Liberia and single cases in 
Senegal and Mali (2). Although virus transmission to other 
countries (Nigeria, United States, and Spain) has occurred 
via air travel, most infections have spread regionally via 
ground movement of sick persons. To aid with response 
planning, we sought to explain this regional spread by as-
sessing publicly available information.

The Study
The data analyzed were case counts, population data, and 
distances between affected and nonaffected districts (these 
distances are influential predictors in the spread of infectious 
diseases) (3–5). We first classified as affected those dis-
tricts  within Guinea (prefectures), Sierra Leone (districts), 
and Liberia (counties) that had reported to the World Health 
Organization >1 suspected, probable, or confirmed case of 
Ebola virus infection from the weeks ending March 29, 2014 
(epidemiological week 13), through August 16, 2014 (epide-
miological week 33) (2). For each district, we considered the 
week of its first reported case as the week it became affected 
(online Technical Appendix Figure 1, http://wwwnc.cdc.
gov/EID/article/21/3/14-1845-Techapp1.pdf). We also iden-
tified the population-weighted geographic centroid (center of 
an area, adjusted for its population density) in each district 
and computed the distance from these centers to similar cen-
ters in each affected district.

We then created 4 regression models to calculate the 
weekly risk of a district being affected as a function of com-
binations of its population, the sum of inverse distances 
(SID) from all affected districts, and SID weighted by the 
number of new cases in affected districts over the preceding  

3 weeks (online Technical Appendix Table 2). We chose the 
best model by examining how well it fit the data available 
through week 33 (August 16). We then evaluated how well 
the chosen model predicted that districts would become af-
fected as the outbreak continued by comparing calculated 
probabilities that a district would become affected (at weeks 
33, 36, and 39) to actual reports of newly affected districts 
over the subsequent 3-week periods (weeks 34–36 [period 
1], weeks 37–39 [period 2], and weeks 40–42 [period 3], re-
spectively). By using data available through week 42, we cal-
culated probabilities that districts in countries bordering the 
3 primarily affected countries (departments in Côte D’Ivoire, 
circles in Mali, departments in Senegal, sectors in Guinea-
Bissau, and divisions in Gambia) would become affected.  

We assumed that country and district borders were po-
rous and that infected persons could not be prevented from 
moving into nonaffected areas (6–8). Reports from the field 
support this assumption, even after country borders were 
officially closed (9). We also assumed no heterogeneities in 
the capabilities of the different areas to identify and report 
cases and that aggregating case count reports into a weekly 
unit of analysis would blunt the effects of reporting delays. 
Our last assumption, for identifying an affected district, 
was that suspected and probable cases were as sensitive and 
specific as confirmed cases.

Among the 3 primarily affected countries, 39 districts 
were affected in 12 weeks (during weeks 13–33). The mod-
el that best explained this pattern was one in which the risk 
of a district becoming affected depended on its population 
and the SID from all affected districts to a nonaffected dis-
trict and in which each inverse distance is multiplied by 
the sum of new cases within the past 3 weeks (weighted 
SID) (online Technical Appendix Table 2 and Figure 2). 
The overall average weighted SID was greater for districts 
during the weeks in which they became affected than for 
districts that had not yet reported cases by the same week 
(online Technical Appendix Figure 3, panel A).

Figure 1 shows the probabilities for specific districts 
becoming affected at weeks 33, 36, and 39. The ranking of 
districts by their probabilities on week 33 (Figure 1, panel 
A) illustrates the good fit of the model because 27 (87%) 
of the 31 districts ranked in the top half (most likely to be-
come affected) were actually affected.

During weeks 34–36 (period 1), 4 districts became af-
fected; during weeks 37–39 (period 2), 4 districts became 
affected; and during weeks 40–42 (period 3), 5 districts 
became affected. The model predicted well which districts 
would become affected during periods 1 and 3 (Figure 1, 
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panels A, C); districts that became affected were predomi-
nantly among those with the highest calculated probabili-
ties of becoming affected. The model did not predict as 
well which districts would become affected during period 
2 (Figure 1, panel B).

Of 167 districts in the countries bordering the primar-
ily affected countries, the predicted probability of becom-
ing affected was >20% for 9 districts (calculated at week 
42). The 3 top-ranked districts had the largest populations 
in their respective countries: Abidjan (Côte D’Ivoire), Ba-
mako (Mali), and Pikine (Senegal); Bamako and Pikine re-
ported cases in weeks 43 and 35, respectively. Also, among 
the top 10 districts, 5 were on or near the Côte D’Ivoire– 
Liberia border (Figure 2).

Conclusions
We identified spatial influences on the regional spread of 
Ebola virus infections. The risk of becoming affected by 
Ebola was significantly higher for nonaffected districts that 
had a larger population and that were closer to affected dis-
tricts with higher case counts (online Technical Appendix 
Table 2 and Figure 2). Thus, it seems that data on population 
size and straight-line distances can serve as pragmatic alter-
natives to data on travel patterns between Guinea, Liberia, 
and Sierra Leone during the first 8 months of the outbreak. 
The correlation between the risk of becoming affected and 
distances and population size was sufficiently accurate for 
predicting which districts would next become affected. Fur-
thermore, a high calculated probability of becoming affected 
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Figure 1. Probability predictions (with 95% CIs) for districts in countries primarily affected by Ebola virus infection in 2014, by week of 
analysis. A) Data available through week 33 (August 16). B) Data available through week 36 (September 6). C) Data available through 
week 39 (September 27). Diamonds indicate the probability that the districts should be affected at the time of the analysis. Filled 
diamonds indicate districts that were affected (i.e., had reported at least 1 case) at the date of the analysis. Black arrows identify those 
districts that became affected within 3 weeks of the date of analysis. SL, Sierra Leone; Gu, Guinea; Li, Liberia.
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for a district considered not affected might indicate the pres-
ence of undetected cases.

This analysis relied heavily on the accuracy of case 
reports and their timely documentation, but there are in-
dications that extreme conditions in the affected countries 
resulted in incomplete records and reporting delays (10). 
These factors potentially contributed to errors in the iden-
tification of which week a district became affected. Conse-
quently, we examined the potential effects of reporting de-
lays (online Technical Appendix Table 2). Also, our results 
might have been influenced by our choice of administra-
tive unit level to use for defining districts. (In our analysis, 
countries with smaller district units have less risk of being 
affected than countries with larger district units, if popula-
tion densities are generally comparable.)

The good fit of our model, absent predictors for the in-
fluence of interventions, suggests that interventions (includ-
ing border closings) were minimally effective at stemming 
regional spread of Ebola virus infection during the period an-
alyzed. As the spread of the epidemic changes because of in-
terventions and changes in human behavior, there is need to 
update and reevaluate the model fit and the parameters used.

We chose to not pursue data on travel patterns, despite 
their potential utility for explaining the spread of Ebola vi-
rus infection. Travel patterns may evolve as the outbreak 
progresses, and obtaining accurate data during an ongoing 
outbreak is challenging. We, therefore, focused on produc-
ing the simplest model.

Overall, our simple model shows that available case 
reports, population data, and distance data can be used to 
identify areas at risk of being affected in an outbreak of 
Ebola virus infection. Additionally, if the current pattern of 
spread in this outbreak continues, or if the outbreak takes 
hold in new countries, this model can be used to advocate 
for allocation of surveillance and control resources to non-
affected areas.
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Figure 2. Predicted risk of districts becoming affected by Ebola virus infection (neighboring countries included) in 2014, based on data 
available through epidemiological week 42 (October 18, 2014).
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Technical Appendix 

This Technical Appendix provides further details on the methods used as well as additional 

results. 

Data and Definitions 

Case Count Data: We obtained the cumulative number of confirmed, probable and suspect case 

counts for each of the 63 districts in Liberia, Sierra Leone, and Guinea from WHO Situation Reports 

posted weekly on the WHO’s website (1). We defined a district as having become affected if it had least 

one suspect, probable, or confirmed Ebola case in the WHO reports. We considered the week a district 

first reported a case as the week it became “affected”. We also used the case counts data from the WHO 

Situation Reports in our calculations of the weighted sum of inverse distances (see Calculations section 

below). We first identified the number of “new cases” in a single given week by subtracting the 

cumulative case count for a district in a given week from the cumulative case count reported for the 

week prior. We then summed the new cases values for every three week period in our outbreak dataset 

to obtain the number of new cases over the prior three weeks. 

For some districts, defining the week a district became affected and calculating new cases was 

complicated by reductions in the cumulative case count from week to week or gaps in reporting. 

Technical Appendix Table 1 describes how case counts data were used to define the week of first report 

(i.e. affected) and for case count weighting in these special circumstances. 

Other studies (2–4) examining the role of distance as a predictor of disease spread used 

confirmed cases only to determine when a new area had became affected. We did not rely on confirmed 

cases alone due to heterogeneity in the reporting delay of confirmed cases reported by country (5). For 

example, in Guinea (using data through week 33), the reporting of confirmed cases across all affected 

districts occurred on just 4 different weeks while the reporting of cases based on all types (i.e. including 

suspect and probable cases too) was spread across 8 weeks. Reports from the field indicated that this 

was the result of laboratory confirmation testing occurring via batch processing. 

Geospatial Data: We obtained “district” and international boundary data from the GADM 

database of Global Administrative Areas, version 2.0 (http://www.gadm.org) and from the United 

Nations Mission in Liberia and the United Nations World Food Program via the United Nations Office 

http://dx.doi.org/10.3201/eid2103.141845
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for the Coordination of Humanitarian Affairs’ Humanitarian Response website 

(http://www.humanitarianresponse.info/applications/data). Districts were defined for the primarily 

affected countries as the equivalent of Prefectures in Guinea, Districts in Sierra Leone, and Counties in 

Liberia. For bordering countries, districts were defined as the equivalent of Départements (Departments) 

in Cote D’Ivoire, Cercles (Circles) in Mali, Départements (Departments) in Senegal, Sectors in Guinea-

Bissau, and Divisions in Gambia. Population data [LandScan (2012)], was obtained from Oak Ridge 

National Laboratory (http://web.ornl.gov/sci/landscan/). ArcGIS v.10.2 (ESRI, Redlands CA) was used 

to calculate the population-weighted centroids for each district (or equivalent) and computing the 

geodesic distances between each district to all others. The population-weighted centroid was the center 

of a given area, adjusted for the density of the population within that area. 

Technical Appendix Figure 1 shows the combination of the Geospatial data and the Case Counts 

Data (aggregated over 3 week periods for a simpler illustration), using data available through Week 39 

[September 27]. At the time of our initial analysis (week-ending August 16, 2014, [epidemiological 

week 33]), the World Health Organization had reported 2,218, confirmed, probable and suspected cases 

in West Africa, with 523 in 14 of 34 districts in Guinea, 849 cases in 13 of 14 districts in Sierra Leone, 

and 846 cases among 12 of 15 districts in Liberia. 

Calculations 

Inverse Distances: 

Sum of Inverse Distances (SID), Nonweighted: 

Let Xi (i= 1 to n) be the set of unaffected districts at time t. 

Let Yj (j= 1 to N) be the set of affected districts at time t. 

          N 

SID (Xi)t =  1 / D(Xi  Yj) 

         
j=1

 

Where D(Xi  Yj) is the population centroid-based geodesic distance between Xi to Yj. 

Weighted SID (wSID) by the rolling sum on new cases counts in the past three weeks: 

Let X(1 to i) be the set of unaffected districts at time t. 

Let Y(1 to j) be the set of affected districts at time t. 

Let Cj be the number of new cases in the past three weeks (i.e. weeks t-3,t-2 and t-1) in 

district Yj where Cj ≥ 1. 
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           N 

wSID (Xi)t =  Cj / D(Xi  Yj) 

          
j=1

 

Where D(Xi  Yj) is the population centroid-based geodesic distance between Xi to Yj. Cj ≥ 

1 was used to prevent multiplication by zero (i.e. versus using where Cj > 0) and is justified by 

the results of Model 1 (see Technical Appendix Table 2). Model 1, which is statistically 

significant and uses a Nonweighted SID shows that all affected districts still have some influence 

on the probability of nonaffected districts becoming affected regardless of the number of new 

cases they have reported in the preceding three weeks 

Goodness of Fit and Correlation: 

We measured goodness of fit of the models to the data available through week 33 by assessing 

how well the models agreed with the set of districts reporting being affected at the time of analysis. To 

do this, we computed the predicted probability ρi of an individual district i being affected at each 

outbreak week (see Individual District Probabilities section below). Then we calculated the log 

likelihood (LL) for the set of districts already affected: 

LL =  Ii * log(pi) + (1 – Ii) * log (1–pi) 

   
i
 

 

Where Ii =1 if the district was officially affected and Ii = 0 when nonaffected. The larger 

the LL the better the fit. 

We also computed a Partial Correlation coefficient for each model. This was the marginal 

contribution of a single predictor to reducing the unexplained variation in affected/nonaffected outcome. 

The partial correlation indicates the explanatory value attributable to the predictor. 

All analyses were completed using SAS for Windows version 9.3 (SAS Institute Inc., Cary, NC, 

USA). 

Model Comparisons 

Technical Appendix Table 2 shows the results of the various models which were evaluated for 

their ability to explain the regional spread of Ebola. All of the models were statistically significant at the 

.0001 level (Wald Chi-Square test) when testing the joint effect of the predictors included in the model. 

Model 3 fit the data the best (i.e. largest LL) and had the best explanatory value [Partial Correlation total 

> 60%]. 
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The LL measure is criticized because it does not take into account the number of parameters used 

in the model, however, when the models were evaluated using the Akaki Information Criteria (AIC), 

which explicitly does so, Model 3 was still the best fitting model: Model 1= 307.0; Model 2=292.6; 

Model 3=283.7. 

Reporting Delay Analysis: 

Several districts reported a relatively high number of cases in the week in which they first 

reported having cases. We considered reporting delays as a possible reason for the high count (under the 

assumption that a portion of these cases should have been reported in the prior week) and conducted an 

analysis to examine the impact on our results. In this analysis we adjusted the number of cases at the 

week of first report when it was greater than 10 [5 occurrences out of the 39 districts having reported 

cases by week 39] by distributing the case count over two weeks: one half remained in the same week 

and the other was assigned to the prior week. Technical Appendix Table 2 shows the results of this 

analysis. Models 1 and 4 saw slight improvement in their goodness of fit, but in the better fitting models 

[2 and 3], there was no improvement seen. 

Internal Validation: 

We randomly eliminated 10% (n=6) of districts from the outbreak data available through week 

33 and fit Model 3 to this dataset. Afterwards, we examined whether the predicted individual probability 

of becoming affected for the eliminated districts (calculated using the original model with the full 

complement of data) fell within the 95% confidence interval generated by the model without these 

districts. We found that all probabilities fell within the 95% CI ranges, suggesting that the model based 

on the full dataset was appropriate. 

Individual District Probabilities 

In order to calculate the individual probabilities of a particular district becoming affected we 

used the maximum likelihood (ML) method to fit Model 3 to the outbreak data and obtain estimate 

values for the parameters α, β1 and β2. The results of the initial ML estimation based on data available 

through week 33 are presented in Technical Appendix Table 3. Technical Appendix Figure 2 shows the 

resulting relationship between the predictors in Model 3 and the probability of becoming affected (also 

based on data through week 33). 

As the outbreak continued, Model 3 was refit (i.e. new parameter values obtained for α and β) to 

the data at week 36, and again at weeks 39 and 42, in order to update the predicted probabilities for 

individual districts (Figures 1 and 2). The updated fit at week 42 was used to calculate the probabilities 
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for districts among the four countries bordering those primarily affected by the Ebola outbreak (Figure 

2). 

Additional Results 

After determining the wSID parameter was significant in all main models we examined the 

differences between the wSID between affected and unaffected districts at each outbreak week. These 

results are shown in Technical Appendix Figure 3A. A discernable difference between the average 

wSID among affected and unaffected districts is apparent at weeks 29 through 33, but not in prior 

outbreak weeks. This may suggest that the relationship between distance and the probability of being 

affected only becomes influential at some threshold: At week 29 the difference in the overall wSID for 

districts that became affected that week and those that did not was 0.00035. Additionally, when we 

examined the differences between the average wSID in affected and unaffected districts within each 

country individually we did not observe a similar pattern for weeks 29 through 31 (Technical Appendix 

Figure 3B). This corroborates the lesser fit of Model 4 Reduced (Technical Appendix Table 2), which 

examined each country individually. It also suggests that border closings have not had a great deal of 

impact in slowing the cross-border spread of disease; in-line with our assumption that borders were 

porous. 

Technical Appendix Table 1. Data definitions used for special data scenarios 

Data scenario Week definition Case count weighting 

Districts initially reporting suspect cases 
only and which then reported 0 cumulative 
cases in a later week due to invalidation of 
suspect cases through laboratory testing 

We used the most recent week in the 
outbreak after which the cumulative case 
count remained above 0 as the week in 

which the district became affected. 

Weekly counts comprised of suspect cases 
which were later invalidated were changed 

to 0 values 

Districts with gaps in reporting We assumed that there was no reversion 
back to unaffected during the weeks with 

absent data. We used the earliest week with 
reported cases as the week in which the 

district became affected. 

During reporting gap weeks we used the 
number of cases reported in the week just 

prior to the reporting gap. 

Affected districts with no new cases in a 
particular week 

NA Case count weighting = 1 (otherwise the 
inverse distance of that district would not 

contribute to the wSID) 
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Technical Appendix Table 2. Summary of models used to characterize the spread of Ebola to nonaffected districts - analysis completed on 
data available through week 33 (August 16, 2014) 

Model Probability of becoming affected 

Log-likelihood (LL) 

Partial 
Correlation

*
 No adjustment 

Reporting 
Adjusted† 

Model 0 
(Intercept only) 

 
1/1 + e

–(α)
 

–165.03 (ns) –165.03 (ns) Not applicable 

Model 1 
(SID) 

 
1/1 + e

–(α+
 β1SID)

 
–159.49 –151.62 29.2 

Model 2 
(wSID) 

 
1/1 + e

–(α+
 β1(wSID))

 
–144.29 –144.33 36.0 

Model 3 
(wSID + Population) 

 
1/1 + e

–(α+
 β1(wSID)+

 β2(Population))
 

–138.85 –139.19 60.6 

Model 4‡ 
(wSIDG + wSIDL + wSIDS) 

 
1/1 + e

–(α+
 β1(wSIDG)+

 β2(wSIDL)+
 β3(wSIDS))

 
–151.06 –139.64 27.0 

Model 4 Reduced‡ 
a) only Guinea data 
(wSIDG) 
b) only Sierra Leone data 
(wSIDS) 
c) only Liberia data (wSIDL) 

 
1/1 + e

–(α+
 βx(wSIDy))

 
 

Where βxwSIDy  = β1(wSIDG), β2(wSIDL), or 
β3(wSIDS) 

From Model 4’s equation above 
 

 
a) –65.3 (ns) 

 
b) –41.5 

 
c ) –47.6 (ns) 

Not evaluated Not evaluated 

*ns, the difference between the model with covariates and the model with the intercept only was not statistically significant at the .0001 level. 
*
 Partial correlations were calculated for the model with “No adjustment” for case reporting delays. For models with more than one parameter [Models 3 
and 4] the value shown is the sum of the partial correlation coefficients as follows. Model 3; wSID=37.9 and Population=22.7. Model 4; wSIDG=0.1, 
wSIDL=–0.1, wSIDS=27.0. 
† When the number of cases at the week of first report was greater than 10 we halved the number of cases at first report and made the week of first 
report 1 week earlier, by assigning half the cases to that week. 
‡ Subscripts G, S, and L correspond to Guinea, Sierra Leone, and Liberia, respectively. 

 

 
 Technical Appendix Table 3. Results of maximum likelihood estimation for Model 3; completed on data available through week 33 (August 16, 
2014) 

Parameter Symbol Estimate Standard Error 
Wald 

Chi-Square Significance Level 
Partial 

Correlation 

Intercept α -5.1556 0.3950 170.3755 <.0001  
wSID β1 1794.8 255.4 49.3937 <.0001 0.3789 
Population β2 2.628E-6 6.041E-7 18.9282 <.0001 0.2265 
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Technical Appendix Figure 1. Map of the primary Ebola affected countries by week districts became affected 

(using data available through week 39 [September 27] (2) Notes: International borders were closed as follows: 

Sierra Leone, June 11
th
 [week 24]; Guinea, August 9

th
 [week 32]; Liberia, August 22 [week 34] (6–8). 
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Technical Appendix Figure 2. Predicted probability of a district becoming affected as a function of its population 

and the weighted-SID to affected areas (fitted to data available through week 33 [August 16]) 
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Technical Appendix Figure 3. Average weighted-SID by outbreak week and affected status for all primarily-

affected countries (Panel A) and for each individual country (Panel B) Notes: The average of the weighted-SID’s 

influence (wSID) on districts that were affected (red-square marker) is compared here to the average (wSID) for 

nonaffected districts (blue diamond marker) at each outbreak week. Districts became affected on just 12 of the 

outbreak weeks, resulting in the gaps in the affected line (as of week 33, when this analysis was completed). A 

discernable difference between the average wSID among affected and nonaffected districts is apparent when all 

countries are shown together at weeks 29 through 33 (Panel A). 


