UNITED STATES OF AMERICA

$$
+++++
$$

DEPARTMENT OF HEALTH AND HUMAN SERVICES

$$
+++++
$$

CENTERS FOR DISEASE CONTROL AND PREVENTION

$$
+++++
$$

NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH

$$
+\quad+\quad+\quad+
$$

FERNALD WORKGROUP

$$
+++++
$$

WEDNESDAY, APRIL 22, 2009

$$
+++++
$$

The workgroup convened in the Zurich Room of the Cincinnati Airport Marriot,

Hebron, Kentucky, at 9:30 a.m., Bradley Clawson, Chairman, presiding.

PRESENT:
BRADLEY P. CLAWSON, Chairman
MARK GRIFFON, Member
PAUL ZIEMER, Member
ROBERT PRESLEY, Member
PHILLIP SCHOFIELD, Member
THEODORE M. KATZ, Acting Designated Federal Official

IDENTIFIED PARTICIPANTS:
JIM NETON, NIOSH ORAU
MARK ROLFES, NIOSH ORAU
ROBERT MORRIS, NIOSH ORAU
JENNIFER HOFF, NIOSH ORAU
BRYCE RICH, NIOSH ORAU
LEO FAUST, NIOSH ORAU
JOHN MAURO, SC\&A
ARJUN MAKHIJANI, SC\&A
LYNN ANSPAUGH, Consultant to SC\&A JOE FITZGERALD, SC\&A

JOHN STIVER, SC\&A
HANS BEHLING, SC\&A
BOB BARTON, SC\&A
HARRY CHMELYNSKI, SC\&A
KATHY BEHLING, SC\&A
NANCY ADAMS, Contractor to NIOSH
EMILY HOWELL, HHS
ROY LLOYD, HHS
ISAF al-NABULSI, DOE
RAY BEATTY, On Behalf of Petitioner
ALLEN CALLAWAY, Petitioner
SANDRA BALDRIDGE, Petitioner

1
2 9:38 a.m. Advisory Board.

$$
P R O C E E D I N G S
$$

MR. KATZ: Good morning everyone.
And welcome. This is the Fernald Working
Group of the Advisory Board on Radiation
Workers Health. My name is Ted Katz and I'm the Acting Designated Federal Official for the

And sorry we're, you know, five or
seven minutes late. We had some logistical things to deal with because we have a large presence at the meeting today.

So we're going to begin this with roll call beginning with the Board members in the room. And if the Board members would identify themselves starting with the Chair and speak to conflict of interest as well. That would be great. That goes for everybody.

CHAIR CLAWSON: Brad Clawson, Working Group Chair. Not conflicted.

MEMBER GRIFFON: Mark Griffon, Work Group Member. Not conflicted on Fernald.

1
2 Group Member. Not conflicted. Work Group Member. Not conflicted.

MEMBER SCHOFIELD: Phillip
Schofield, Work Group Member. Not conflicted.
MR. KATZ: Okay. And then checking on the line just to be certain we don't have any Board members, do we, on the line?
(No response.) the NIOSH ORAU Team please. at Fernald. health physicist. No conflicts of interest. Team. No conflict.

Team. No conflict.

MEMBER ZIEMER: Paul Ziemer, Work

MEMBER PRESLEY: Robert Presley,

MR. KATZ: Okay. Then the room,

DR. NETON: Jim Neton, conflicted

MR. ROLFES: Mark Rolfes, NIOSH

MR. MORRIS: Robert Morris, ORAU

MS. HOFF: Jennifer Hoff, ORAU

MR. KATZ: And on the line? NIOSH

1 ORAU Team?

3 No conflict.

4

5
6

7

8

9 conflict.

11 Bryce. No conflicts. conflict.

MR. KATZ: I'm sorry. Can you
repeat that please?
MR. RICH: This is Bryce Rich.
MR. KATZ: Bryce Rich.
MR. RICH: ORAU Team. No

MR. KATZ: Thank you. Welcome,

MR. FAUST: Leo Faust, ORAU Team.

MR. KATZ: Any others from the
NIOSH ORAU Team on the line?
(No response.)
MR. KATZ: Okay. And then in the room from SC\&A?

DR. MAURO: John Mauro, SC\&A. No

MR. MAKHIJANI: Arjun Makhijani.
I have been declared conflicted on Fernald.

3 Makhijani. I've been declared conflicted on
4 Fernald.

6 a consultant to SC\&A. No conflict on Fernald.
7 I have a general conflict that is having been
8 an expert witness.
MR. KATZ: Speak up please.
MR. MAKHIJANI: I'm Arjun

MR. ANSPAUGH: Lynn Anspaugh. I'm anper

MR. FITZGERALD: Joe Fitzgerald,
SC\&A. No conflict.
MR. STIVER: John Stiver, SC\&A. No conflict.

MR. KATZ: And on the line?
Anybody from SC\&A?
DR. BEHLING: Hans Behling. No conflict.

MR. KATZ: Welcome, Hans.
DR. BEHLING: Thank you.
MR. BARTON: Bob Barton, SC\&A. No conflict.

MS. BALDRIDGE: Harry Chmelynski,
SC\&A. No conflict.

MR. KATZ: Harry Chmelynski.
Okay. And then other federal employees or contractors in the room first.

MS. HOWELL: Emily Howell, HHS.
MR. KATZ: And then on the line, any federal employees or contractors? HHS?

DOE? DOL?
MR. LLOYD: Roy Lloyd, HHS. No conflict.

MR. KATZ: Welcome, Roy.
MR. LLOYD: Thank you.
DR. al-NABULSI: Isaf al-Nabulsi, DOE. No conflicts.

MR. KATZ: Okay. And then in the room, SEC petitioners or other members of the public who would like to self-identify?

MR. BEATTY: Ray Beatty, former site worker. I'm here on behalf of the petitioner.

MR. KATZ: Welcome, Ray.
MR. CALLAWAY: Allen Callaway, former worker at Fernald.

1
2
3 members of the public who like to self-
4 identify?

6 petitioner. 8 We were wondering whether you would be here or

9 on the line.

11 Adams. I went to hit my mute button and

14 Nancy. So that's -- Nancy is a contractor to
15 NIOSH. No conflict.

21 the line, just to remind you, I think all of
22
MR. KATZ: Welcome, Allen. And on the line, do we have any號

MS. BALDRIDGE: Sandra Baldridge,

MR. KATZ: Oh, welcome, Sandra. disconnected you.

MR. KATZ: Sorry. But welcome,

Any other members of the public or staff of the Congressional offices?
(No response.)
MR. KATZ: Okay, then, just a couple other things. For everybody who is on you are probably familiar but mute your phone

1 except when you are speaking to us. And if
2 you don't have a mute button, use star six.

4 hold button if you need to go away from the
5 phone for some time because the hold button
6 will interfere with the call.

8 everyone here in the room since we have
9 members of the public here to please just keep
10 in mind Privacy Act concerns when you discuss
11 material.

21 issues that came up but today we're going to
And with that, Brad, it's all
yours.
CHAIR CLAWSON: Well, I'd like to welcome everybody here today. We're here for the Fernald Work Group. It has been a long time since we've met. The last time we met was 11/13, I believe -- that's '07 but it was November of last year that we met. And in that, we had numerous discussing the sampling plan that SC\&A has put

Please disconnect. Don't use your

And I would just mention for matial

1 forth, recycled uranium, K-65 silos. We're
2 going to be talking a little bit about thorium
3 and the radon breath analysis.
And we've had -- John, SC\&A has
5 sent out several papers on that. We want to
6 make sure that everybody has those papers.
7 And, John, you were to find out which ones
8 were PA-cleared.

DR. MAURO: Yes, I got
confirmation that the sampling plan and the RU report have been cleared.

CHAIR CLAWSON: Okay.
DR. MAURO: However, the radon contamination from the silos report has not been cleared however right now I have it with Emily who is looking over the key pages. There are four pages in there that I would -that she's going to look at right now.

And hopefully she'll clear it. And I will be able to make copies and distribute those four pages. That's all we really need right now for the purpose of this

1 meeting is to go over those four pages. Meanwhile, the report itself, the entire report, it's possible to get that cleared shortly also. But right now I'm confident that we'll have at least the key pages available for our visitors this year that would like the cleared material.

So that's the only report. We probably won't get to that report based on the order I think we're going until this afternoon. So we should be well poised to do that.

CHAIR CLAWSON: Okay. So the sampling plan, is that cleared?

MEMBER ZIEMER: That's cleared.
CHAIR CLAWSON: That's cleared.
Do we have copies for the public?
DR. MAURO: No, all I did was send
out electronic versions of the reports late last week --

CHAIR CLAWSON: Okay.
DR. MAURO: -- to the work group

1 and NIOSH. I do not have extra copies. We 2 can have that done. copies made.

CHAIR CLAWSON: Okay.
DR. MAURO: Mine is heavily marked up. If someone has a clean one, we can get

CHAIR CLAWSON: I've got a -probably a clean one. I'll take care of that

MEMBER ZIEMER: Did the petitioner get copies, cleared copies?

DR. MAURO: They can.
MEMBER ZIEMER: Did Sandra --
MR. KATZ: Sandra, have you received any materials for this meeting from maybe Laurie Breyer?

MS. BALDRIDGE: Yes, I do.
MR. KATZ: Okay. Thank you.
DR. BEHLING: Excuse me, this is Hans Behling, SC\&A. And I'm going to be asking John to identify those four pages in question that you say are likely to be at

1 least cleared by the time we discuss it.

3 the report and the four pages to Emily. So I
4 don't have it in front of me. But as soon as
5 she returns -- oh, she's here. Hold on.
DR. MAURO: Sure. I just handed

Hans, the pages that I was
planning on distributing to everyone -- have it cleared and distributed is page two, three, five, and ten.

DR. BEHLING: Just a quick
question.
DR. MAURO: Yes?
DR. BEHLING: If those are the
pages you are able to hand out to participants who are present in the room, is it possible for me to go outside of those pages? Because I was hoping to discuss a few things that are not contained on those pages.

DR. MAURO: Absolutely. We just can't hand out -- in other words we can speak about them, of course, with the guidelines not to divulge any Privacy Act materials. But

1 certainly you can speak to any aspect of the
2 report that you'd like to, sure.

4 you there's no Privacy Act issues here in the 5 entire report.

6
7 to make sure that we stay within the
8 boundaries. Okay?

21 introduction, last night I read through the
DR. MAURO: Yes and Emily is here

CHAIR CLAWSON: And I'd also like to bring up -- everybody knows that we work from a matrix on this. And it's been kind of so long and so forth. We're just reviewing the matrix right now. So, John, if you'd like -- if we could, I'd like to start from the sampling plan and then to the recycled uranium stage contents with the matrix.

DR. MAURO: Yes.
CHAIR CLAWSON: Would that be all
right?
DR. MAURO: By way of transcripts from the October meeting just to

1 make sure I got my arms around the issues.
2 And in addition to the subjects that we are
3 planning to discuss today, I did notice that
4 there were a few other items that came up
5 during that meeting.

6

7
8 to cover. But the other things that we talked
9 about and sort of left open that perhaps we 10 should not lose track of.

21 look into the matrix on that.
If you'd like, I could -- I sort
of made a list of the things that we are going

We could do that now or we could just put together a matrix at some future date to make sure we pick those up. You know?

CHAIR CLAWSON: I think we could start in.

DR. MAURO: We could start right away.

CHAIR CLAWSON: And in closing, we can review through that and make sure that we have captured everything and we'll be able to

DR. MAURO: Fine.

2 the sampling plan. This is a document I
Then with that, let's start with believe was sent out as PA-cleared, as DOEcleared. And it's dated March 2009 on the cover page. And it's title Draft Sampling Plan for Use in Evaluating the NIOSH Internal Dosimetry Coworker Model for Fernald Workers.

A little history here. When we previously met, SC\&A did come to the table with a sampling plan, draft sampling plan that was designed to evaluate the completeness of the dataset, completeness in terms of is there adequate data for the different buildings? Is there adequate data for the various categories of workers? In terms of what percent of the workers had bioassay data -- this is basically bioassay data. During that meeting, it was decided no, no, no, we don't want to do that. We want to do something a little different. We want to do that but we want to do more because between -- because by the time we had

1 the meeting in October, NIOSH had issued a
2 coworker model, a very specific coworker model
3 on how doses, internal doses from intake of
4 uranium would be reconstructed for those
5 workers who had -- did not have data or had
6 limited data.

21 to workers that have the potential for high-
A very important underpinning of
all this is -- the general concept was that well, there was a lot of data. And for most workers, you would not need to use a coworker model. But there will be some. So the coworker model was put in place.

We were asked to develop a sampling plan that would accomplish a number -- at that last meeting -- accomplish a number of objectives. One is completeness, adequacy, but most important, we were asked to develop a plan that would -- when you are finished doing the sampling, you could feel confident that the plan will not underestimate the doses end exposures. That somehow that coworker

1 model did not underestimate at least some of
2 the workers that had a higher potential for
3 exposure. And that's what we developed. We developed basically -- the

5 actual sample -- the number of samples are not
6 in the plan. What we really have here is the
7 strategy for where we would sample, which
8 workers we would sample, what years we would
9 sample, what buildings we would sample. But

11 names of the workers that we would actually 12 sample in the plan. 20 you would look -- I'd like to first describe

21 what the coworker model is. If you wouldn't mind opening up on your screen to page two of

1 the report. The first thing we did in this
2 report is to describe the coworker model that 3 NIOSH developed.

4

5 I misrepresent our understanding of the
6 coworker model, please help out.

21 of cancer. What type of uranium, F, M, or S
And by the way, Jim, if in any way

You'll see on page two, Table 1-1,
this is a look-up table that is your coworker model. Let's envision we have a worker that you wanted to reconstruct the internal dose from the inhalation of uranium but you don't have a complete dataset on bioassay data or you don't have any data on bioassay data for this worker. And you want to reconstruct his internal exposures.

You go to -- there are basically three tables. One on page two and two on page three. The first table is -- if you believe -- you first ask yourself the question okay, here we have a worker. He has a certain type would give the highest dose to the organ of

1 concern?

3 lung cancer, just for an example. That being
4 the case, you would go to the table on page
5 three that I -- it's Table 1-3. Basically
6 that's the look-up table for Type S uranium.

21 and these are the additional side pieces which
Let's say you determine it was a that's the look up table for Type s uranium. And what it says is okay, if the worker worked from 1/1/52, start of operations, to $12 / 31 / 53$, you would assume that he would have a distribution. You would assume his intake rates for uranium Type S was 8,197 micrograms per day with a geometric standard deviation of 3.44 .

So it becomes just a look-up
table. And for that worker, you know how many years he worked there. You would assign those intake distributions to that worker. And you would run it and get your dose to the organ of concern.

And now the question becomes -we are going to talk about a little more

1 later, is in addition, it is assuming that
2 those micrograms per day ingested were at two
3 percent enriched uranium. And what is being
4 assumed is across the board, everyone is going
5 to be assumed to have two percent enriched
6 uranium.
7 We looked very carefully at that
8 assumption to convince ourselves that that, in
9 fact, is a reasonable if not bounding approach 10 and this was discussed at the last meeting.

11 And the answer was yes.

Even though there were some workers that might have had six, seven, eight, ten percent enriched uranium that they worked with, it was generally for a relatively small period of time.

So by assuming it was two percent for his entire work history, that blends out, so to speak, and the outcome is legally to be a conservative assumption. So we are comfortable with the two percent default assumption embedded in this process.

There's also the question, and we're going to get this in much greater detail, on recycled uranium. The key to the coworker model was to say okay, once you know the activity or amount of uranium that was inhaled, using the coworker model or using the worker's actual data, you assume a certain mix of plutonium-239, neptunium, technetium, and other fission products as being the material that goes along with the uranium as a default intake.

This is the so-called recycled uranium issue. We do have some concerns with that. So unlike the two percent enrichment where we're comfortable, we do have some important concerns regarding recycled uranium.

That's the subject of a separate report that we're going to go to after we finish this report. And we'll get into some detail. Okay. Now everyone has a pretty good sense of this coworker model. Now the question becomes --

1
2 of clarification that I think will come
3 important later. If you notice, there is a
4 minimum GSB of three in these columns, those
5 are not calculated GSBs. That is the minimum
6 GSB that we would assign to a distribution
7 that was measured acknowledging the fact that
8 at a minimum, there is a GSB of three
9 associated with the biological variability of 10 the models and such.

21 kind of increase the 84th percentile of
So that's important because then that rises to the 84th percentile when the comparison is done by SC\&A later.

DR. MAURO: Okay. Good.
MEMBER ZIEMER: So it is only three if there's not information to show that it's higher than that.

DR. NETON: If the GSB, for instance, came out 1.6, we would automatically at a minimum have a GSB of three which will distribution. So I think there have been some

1 mismatched comparisons later on. But --

21 there was sufficient data to sort by quarter.
DR. MAURO: Okay. You're right.
There is that.
All right. Let's go on. Now you
say to yourself, okay, so now we have default intake rates. The way those default look-up table intake rates were obtained, if you go to page four, you'll see a table called Table 21.

What this presents here is an excerpt of a four-page table that is in the coworker model that says this is the data that was used in terms of excretion rates. That is micrograms per day of uranium excreted in urine by year. In fact, it's actually by quarter.

The only place where they've rolled up information is in the '52 and '53 time period where there wasn't enough data to parse it by quarter. But beginning in '54,

This table goes on, I believe,

1 into the '90s. I'm not sure but we can look
2 it up but it goes on for quite -- in other
3 words, you have quarterly data that goes on.
4 And what we basically have is the
5 excretion rate in micrograms per day at the
6 50th percentile and the 84th percentile, on a
7 log-normal distribution that was determined --
8 that was measured --

19 how much data this is because right now we're 20 looking at a mean, median, and a standard

21 deviation or a geometric standard -- 84th
22
MR. ROLFES: John?
DR. MAURO: Yes?
MR. ROLFES: The data do go
through 2006.
DR. MAURO: 2006, thank you for correcting me.

So I would first offer an observation that this is quite a bit of data, okay? So what you have is a dataset. We're going to get into a little bit more detail on percentile. But, of course, that reflects a

1 number of individual samples of urine.

4 on for several pages, let's see if using this
5 we can match the intake rates that are on
6 those tables we showed you before. And we
7 did.

9 representation, a complete, accurate
10 representation of the distribution of
11 excretion rates, we confirmed that the numbers 12 that are being used as the coworker model are,

So what we did was say okay, let's take our face value, this long table that goes

So given that this is a correct in fact, compatible and consistent with the excretion rate. So a minor point but, you know, we did that check.

Now we're going to move on and get to what's the heart of the matter. Let's jump off to page eight.

And one of the things that this report does is, besides being the foundation upon which we could build a sampling plan, it is also very informative in terms of getting

1 a feel for the amount of data that's out there
2 and its granularity so that each individual
3 around the table can make a judgment for
4 themselves whether or not this is a lot of
5 data that looks like it's rich and with a
6 great deal of granularity or there are places
7 where, perhaps, it is weak.

9 the beginning of where SC\&A started to go into
10 the HIS-20 database and started to sort
11 information. Now if you recall when we looked
12 at the data on page four -- I'll get to that 13 Table 2-1 -- it basically gave you by quarter 14 for each year. 16 the presses. Where could there be hidden

21 for hundreds of workers, maybe thousands of
Attachment A, page eight, this is

Whoa, we said to ourselves, hold problems? And one of the things we said to ourselves is a hidden problem could be that well, listen, if I'm looking at a particular year and I'm rolling up all the bioassay data bioassay samples, and I'm giving you the mean

1 and the standard deviation for that year, I
2 effectively have captured the full
3 distribution of bioassay samples observed in
4 that year. And it crosses all work categories
5 and it crosses all buildings.

7 was what happens if within that array of data,
8 there might be a group of workers that have a
9 particular job function or a building in that
10 year that had a particular operations going
11 on, if I was to pull that group out
12 separately, which it hasn't been done in your

21 aggregate 50th percentile and 84th percentile coworker model, is it possible I'll find that the 50th percentile and 95th percentile or the upper bound values are a lot different than this so-called aggregate value?

If that's the case, we've got a problem. So one of the first things we started -- you know, that's how we started to think about the problem. That is assigning an for a given year to all workers, all work

So the first concern that we said

1 categories, all buildings, you know, in theory
2 there could be a problem if there's some group
3 of workers that consistently had a higher-end
4 exposure in that year or maybe many years.

6 that that work category had no bioassay data -

9 want -- and that's -- but I want to get you
10 into the way we are thinking about the
11 problem. And this is a recurring theme in all
12 of the work we do. And that is -- the

21 have to ask yourself for the place where we do recurring theme is granularity. Whenever you have a group of data for a given year or a given facility and you have a mean and you have a standard deviation on the data, you know, where things are sort of pooled, and if it turns out there is a significant fraction of workers that really don't have data or have adequate data, you have data and we do build a distribution from

DR. MAURO: Correct. Now I would

1 that data, will we pick off some parameters
2 for that distribution?

5 that fall at the high-end of that distribution
6 and we're going to underestimate their dose?
Now I would be the first to agree
8 that in this site, and you'll see as we get
9 through this, once you get past the first
Is it possible that there is a group of workers that were unmonitored and couple of years, we're talking about over 90 percent of the workers that were working there have bioassay data. So the need to use the coworker model is the exception to the rule.

That is the vast majority of claimants will -- their dose reconstructions for internal exposure for an inhalation, an ingestion of uranium is going to be done using their data.

And the question we're asking ourselves now is well, for those individuals that we may have to resort to the coworker model, how robust is that coworker model? And

1 what kind of sampling plan can we implement to
2 convince ourselves that there are not going to
3 be groups of workers that we are going to
4 underestimate.

7 question --
8
9 subpopulations -individual. about that.

All right. Now --
MR. MORRIS: Can I ask -- I have a

DR. MAURO: Sure.
MR. MORRIS: -- at this point.
The concept you are proposing then is that there is -- we've got population data and you are subdividing the population into

DR. MAURO: Yes.
MR. MORRIS: -- and say how
representative is that.
DR. MAURO: Yes.
MR. MORRIS: How small can a
subpopulation go before it becomes an

DR. MAURO: We're going to talk

5 know, you, by definition, can find
6 subpopulations that are above me.

9 robust and favorable this particular coworker 10 model is. And around the table we can judge 11 whether or not that is a fair test.

MR. MORRIS: Okay.
DR. MAURO: Good question.
MR. MORRIS: And I think that it really points to the big picture is that, you

DR. MAURO: Well, you're going to see what we propose as a way of testing how

And in the end, we're going to actually suggest a test. Okay, what is it we're going to do to -- what do we suggest we do to convince ourselves that yes, this looks pretty good -- or no, it may not be.

We will discuss the test. We don't know what the results are going to be.

But we're going to discuss whether we think that is a fair test.

DR. NETON: I'd like to make one observation for what it is worth and I'm going

1 to hold off on this one. I'll just throw this
2 on the table as you discuss the plan.

4 bioassay data for more than 90 percent of the
5 claimants or 90 percent of the workers, it
6 probably holds true for the claimants. I
7 think Mark told me it is 92, 93 percent of the
8 cases have bioassay data. Then it seems to me
9 that this sampling plan is looking for the 10 proverbial needle in the haystack.

22 400,000 records here. And we've got a

1 thousand claimants at Fernald roughly. And
2 let's say 95 percent have bioassay. There are
350 that probably have zero bioassay data in
4 that ball park.

21 data out of 2,400. But eventually -- let me
And so that why would one look at 400,000 records to find the ones that --

DR. MAURO: Well, remember --
MEMBER GRIFFON: Instead of
hypothetical categories, look at real
categories.
DR. MAURO: Let me give you this,
in a given quarter, the question is how many people are we talking about? We're talking about two, three, 4,000 workers who have unique social security numbers. And what we're saying is in 1952 and '53, 90 percent of those, on that order -- in 1952, 90 percent had no bioassay sample. So there's something -- '52 looks a little weak.

In '53, 58 percent had no bioassay show you how I'm looking at this -- eventually

1 once you reach 1957, 95 to 98 percent of the
2 workers have some bioassay data. At least one
3 if not more.

4

5 you just described a different strategy. And
6 we're talking about on the order of anywhere
7 from 3,000 to 4,000 workers. Now let's say it
8 turns out two percent of 4,000 workers or
9 three percent of 4,000 workers have no
10 bioassay data. You're saying that we can go
11 in and take a look at a sample from those and 12 see whether or not there is reason to believe 13 that based on their work history, they may be 14 people who could have had a high -- could have 15 been exposed.

So right off the bat I would say

Or is there evidence that no,
these are workers that very little potential for exposure. We did not propose that. That is -DR. NETON: One more point of clarification, too, is you have to look at how we apply these coworker models or how we apply

1 bioassay data in general. If a worker had no
2 bioassay data until 1957, we would not apply,
3 more than likely -- I can't think of a case of
4 how we would do that -- this coworker model 5 would fill in '52 to '56. We would calculate

6 some chronic exposure intake that could have
7 occurred and resulted in that bioassay value
8 in 1957.

11 '56 does not prevent us from doing bioassay
So the mere fact that there are a small fraction of workers monitored in '52 to data for workers who were still on in '57 and moving forward.

DR. MAURO: Exactly. Very good point. So you have to -- so you're saying -let's say we have -- we're in 1957, we -- by the way, all these workers are workers that were there starting in the '70s. All right, so you're saying we have a worker that was there beginning from '52 working right through 1970. And we start to have plenty of data for him let's say starting in '57.

1

6 the coworker model. When would you use the
And now you say well, we have to fill in the earlier years. You would fill in those earlier years based on a best fit?

DR. NETON: Yes.
DR. MAURO: As opposed to going to coworker model?

DR. NETON: The coworker model has zero data, essentially zero data for anyone.

DR. MAURO: Any worker -- there's a very good chance that there's no workers that never had any bioassay --

MR. ROLFES: Let's plug in some numbers, you're saying 3 to 4,000 workers at Fernald. I'll give you, you know, some comparison to the number of claims that we've received at NIOSH for dose reconstruction. We've received 1,040 claims versus the, you know, larger population at the total Fernald site.

Before you had mentioned some lung cancer cases. That was the -- you know, that

1 was what you had cited in your report.

9 looked at their job categories and the amount 10 of data that they had. I found roughly 16

11 claims that had less than 50 percent

21 these people have very low latency periods so
DR. MAURO: As an example.
MR. ROLFES: As an example, correct. So what I did is went and looked to see the number of lung cancer claims that we had received for dose reconstruction that were less than 50 percent probability of causation.

Then what is did is went and probability of causation and looked through the job categories in the data that we've received. There were approximately eight claims that did not have any data or did not have any internal dose reconstruction information in there that we could use.

So if you look at the actual job categories, there's a variety of categories. And let's see -- if you take a look, some of there's not very much time in between the

1 first exposure and the date of diagnosis.
2 So essentially for some of those
3 people that have less than five years, for
4 example, for a solid tumor, five years of
5 latency, no matter what uranium intake we
6 assign -- so I don't foresee this being a
7 large population of claims.

8

DR. MAURO: Neither do I.
MEMBER GRIFFON: Can I step back?
Can I go back one step further? And this is, I think, why I thought and I'm trying to catch up with all the matrices but this is why we decided to question -- go down the path of questioning data completeness and validity more so than the coworker model.

This is like deja vu all over again. But that's the problem with having these meetings so far apart. I mean this is very much like the Rocky Flats situation. You know the coworker model was not used for many claims, right?

So we ended up looking at the

1 actual -- a fraction of the claimant's data
2 and saying okay --

21 of different points. we lost it. disconnected briefly. minutes.

MR. KATZ: Can we hold? Can we hold? We've lost the line. I don't know when
(Whereupon, the foregoing matter went off the record at 10:13 a.m. and resumed at 10:14 a.m.)

MR. KATZ: Hello, this is Ted Katz
with the Advisory Board on Radiation Worker Health. We lost the line. It was

But can someone on the line just tell me how long have we lost the line for?

MR. RICH: It's been about ten

MR. KATZ: Ten minutes, okay. We're on the same issue. There's been a lot of interesting discussion but it would be very heard to recap it because it has been on a lot

We're sorry about that. It's just

1 a physical problem here in the room. 4 to data completeness there in looking at the

5 data, the completeness of each claim in the
6 file, you know, we looked at it and said okay, 7 is there enough data there to reconstruct

8 dose?
MEMBER GRIFFON: But anyway, to finish my point, you know, the reason we went

And this is to Jim's issue, maybe they didn't have many singles but they had enough to do a chronic exposure and bound their dose. It was also for the external side. And I know this was somewhere in that transcript.

But, you know, so then somehow we -- I don't know if we lost this whole data completeness side and validity. I know that at some point NIOSH did look at HIS-20 compared to raw data. And they gave a report on that.

But I don't know that we ever
looked at this completeness of the individual

1 records. So we know that we're not going to
2 rely on coworker models very much.

21 various legacy computer systems. So we need
The question is is there enough data in there because part of the reason this -- at least for me, a part of the reason this comes up is that this question of in 1970, I think, the database itself only has people that were still working there in 1970 or something. So we want to make sure in their hard copy records that everything is there or nothing is there to reconstruct their doses. And we sample a fraction of individuals.

DR. NETON: I'm not sure where that 1970 date came from.

MEMBER GRIFFON: Oh, okay.
DR. NETON: We need to look into
that. I was talking to Mark about that this morning. I mean I was there when this company was put on line. And I was reasonably certain we had everybody transfer over from the to look into that. I'm a little bit confused

1 by --

5 very concerted effort to consolidate all of
6 the legacy databases.

21 designed to make a statement about
MR. MORRIS: That sounds like a different site to me actually.

DR. NETON: I don't -- we made a

MEMBER GRIFFON: That may have been true at Rocky Flats actually now that I think about it, yes.

DR. NETON: We will look into it.
MEMBER GRIFFON: At any rate, still the issue that I have stands with the question of, you know, validating the -- or data completeness and validation rather than -- I mean this sort of tests the coworker model and I'm not dropping this issue but, you know, I'm sort of stepping back to say how did we eliminate those other two.

DR. MAURO: Well, at the last meeting, we did have a sampling plan which was completeness.

1

2 proposed sampling plan would have been we're
395 percent confident that at least 50 percent
4 of the workers in this group have bioassay
5 data with a sampling plan that had that as its
6 end result.

8 level of confidence what percent of the
9 workers had at least a certain number of 10 bioassay samples. It was a completeness

11 statement. It was designed around the

21 to sample the coworker -- is there a way to
That is the outcome of that last

That is we could say with some necessity of completeness.

During the course of our workgroup meeting, we went on for most of the meeting --

I read the transcript last night -- saying that well, you know, now that there is a coworker model, we're still interested in completeness but we're even more interested in making sure that the coworker model is claimant-favorable, bounding. Is there a way sample the data to convince us that the

1 coworker model is robust?

3 completeness -- and this is the language that
4 is in the transcript. So we went back to the
5 drawing board and came up with this which I
6 think --

8 we're talking past each other a little bit
9 still. I mean I'm not talking about
10 completeness of the electronic database. I'm
11 talking about completeness of the individual

21 the hard copy. Everything that we did was
DR. MAURO: We had that.
MEMBER GRIFFON: Yes.
DR. MAURO: But we didn't go into electronic.

1
2

MEMBER GRIFFON: Right. Right. DR. MAURO: Everything we were working with was the electronic database. We did not do any things like we did on NTS where we went into handwritten records or hard copy scanned records and go into that original data.

And when we discussed this matter at the last meeting, there was some discussion about was the data, the hard copy of scanned data faithfully transcribed from the original set into the HIS-20 database.

And there was a report prepared that's on the record that NIOSH presented that I do not believe we reviewed that was quite extensive showing that it was faithfully transcribed.

MEMBER GRIFFON: Yes, and that's NIOSH's report, right, right.

MR. MAKHIJANI: I'm looking at the completeness plan that we sent to the working group before the last working group meeting

1 dated October 6th and the design of that
2 working plan -- well, let me just read it --
3 in general we wish to determine if workers at
4 Fernald were monitored during specified time
5 periods and with what frequency.
6 The main metric to be used is the
7 frequency of actual monitoring for the
8 subpopulation of workers compared to the plan
9 frequency, once a week, once a month, or once a year according to job title.

That was the design of the plan that you brought from which then there was a new instruction given to go back and design a new plan.

DR. MAURO: That's in here. In other words, in effect, we didn't implement that plan but as we go through this, you can decide for yourself whether or not to a large extent that question has been answered. So it's not going to take that long.

MEMBER ZIEMER: Could I ask one other clarification question, though, John?

1

DR. MAURO: Yes, sir.
MEMBER ZIEMER: On the column
where you give the workers with no samples, as
I understand it, you are only talking about for that year.

DR. MAURO: Yes.
MEMBER ZIEMER: For example --
DR. MAURO: Yes.
MEMBER ZIEMER: -- that worker
might have gotten picked up --
DR. MAURO: Yes.
MEMBER ZIEMER: -- in the subsequent year --

DR. MAURO: Yes. And that's the point Jim was making.

MEMBER ZIEMER: That's the same point then, okay.

DR. MAURO: Yes.
MEMBER ZIEMER: So the idea that, for example, in '53 that 59 percent of the workers have no bioassay, that doesn't mean that 59 percent of the workers have no

1 bioassay in their record. Only for that -- DR. MAURO: Absolutely correct. DR. NETON: In fact, we know in the claimant population, 90 percent-plus of the claimants have some bioassay data.

MEMBER ZIEMER: Right. Right. DR. MAURO: My -- I am trying to MEMBER ZIEMER: So this is really -- it's something workers with no samples for that year.

DR. MAURO: Absolutely. And that's why the table is structured this way.

MEMBER ZIEMER: Yes. I understand.

DR. MAURO: That's what it means.
Now I think it is important to point out that this table demonstrates that at least by year -- I realize this is rolled up -- rolled up in this data are all the different buildings and all the different job categories -- but from the point of view as a function of

1 time, the percent of workers -- a large number
2 of workers that had bioassay data is enormous.

4 data sets for quite some time now, five years,
5 they don't come any better than this. I'm
6 sorry I have to say that. This is complete in
7 terms of the percentage of workers that have
8 bioassay data.

11 But when you look at these data, except for 121952 and '53, once you start moving into the 13 late '50s, the percent of workers that have at 14 least one, and a very large percentage have 15 more than four, samples per year is large.

18 large enough. But what the purpose of this
19 table is -- to show, at least by year, there
20 is a lot of bioassay data. It's all in
21 milligrams per liter.
So that's the only message I

1 wanted to leave regarding Attachment A. And 2 we have other important attachments --

6 this, you've got maximum number of samples per
7 year, per worker, per year, and somebody got 8 229?

DR. MAURO: Yes, I circled that.
Bob Barton, are you on the line?
MR. BARTON: Yes, sir, right here.
DR. MAURO: Could you help me out a bit? Do you have Attachment A in front of you?

MR. BARTON: Yes, I do.
DR. MAURO: The far right-hand column called maximum number of samples per worker per year, am I correct in assuming -right now I'm on page eight -- when I see 229, does that mean that there is a worker who in that year had 229 bioassay samples collected?

MR. BARTON: Yes.

1
2
3
4

6 one of your subgroups, you would probably
7 identify that person as having a significant
8 intake during the year. That's the only
9 reason to sample that often.

21 is something really obvious like, you know,
22
DR. MAURO: Thank you.
MR. MORRIS: Can I follow up on that?

DR. MAURO: Yes.
MR. MORRIS: If that person was in

DR. MAURO: I just wanted to make sure on that one.

MEMBER ZIEMER: That's virtually every working day.

DR. MAURO: Yes.
DR. NETON: I have another point I'd like to bring up about the coworker -- the coworker model -- is that we make no overt attempt to strip out all the incident samples that are in there, which tends to bias the upper end on the high side, because unless it three milligrams per liter where it is just

1 physically impossible, they are left intact.

3 are assuming that those are chronic exposures
4 because of the chronic exposure model.

6 been in the subgroup that you have picked as
7 an analysis category, there is no doubt that
8 person would have biased your subgroup.
DR. NETON: Yes, I suspect there is a pain curve that shows up later here. It was probably an incident. Those are all from one guy.

DR. MAURO: See, one of the
problems with the program that's -- with the sampling plan is -- let's say we go in and say okay, we want to test this. The coworker model is claiming him. And we happen to pick this guy as being -- well, we're going to go in and pick a guy, and we have data on him. And we reconstruct his dose.

And we say, how does that dose stack up against the coworker model? And we

1 know what is going to happen -- exactly, he's
2 going to come in much higher. That's one of
3 the fundamental weaknesses in the sampling
4 plan.

5 6 - you're going to see -- we're going to get to

7 a point in this process where we'll say, well,
8 who are we going to pick to determine whether
9 or not this coworker model is claimant10 favorable and can be used as, you know -- and

11 we're going to talk about that.
That is, the people that we pick -

And the point you make is very well taken. You could very well walk away after the sampling plan. We randomly sampled. And we're going to show you how we think you could randomly sample to see if there are any surprises.

You may very well come out with a positive -- a result that says the coworker model would underestimate this person's dose by a factor of two or three or four if it was used. But then you would say well, wait a

1 minute, we have -- we wouldn't use the
2 coworker model.

7 because it doesn't account for the people who 8 have bioassay data. 21 that we are just talking about.

DR. NETON: Exactly. That's a circular logic there.

DR. MAURO: What do we do?
DR. NETON: The model is wrong

DR. MAURO: I'm going to let the work group, you know, make these judgments. We went through a -- you have to understand, we went through a process saying let's create a compendium of data. So understand what we're looking at. And you now go -- how many bioassay samples do we have by quarter?

Let's move on. I think you
understand. I fully understand what you're saying and I want to completely -- I want to make it very clear, you know, what the strengths and limitations are on the thing

But right now all I'm doing is

1 communicating factual information. I'm not 2 drawing any conclusions. I'm trying not to.

2116 -- and in fact that's your roll-up by time
22
You will see, if you move on --
MR. ROLFES: John?
DR. MAURO: Yes.
MR. ROLFES: Also to make another comment about the years 1952 and '53, you pointed out workers with no samples during that year and that year only.

DR. MAURO: Right.
MR. ROLFES: Keep in mind also that there is a lot of construction activities ongoing. And not all the plants are operating at this time. So there are a lot of employees that are building new buildings, not working in radiologically-controlled areas. So there is a reason that many of them aren't sampled as well.

DR. MAURO: What happens is -when we get past those tables and go to page -- here's the numbers of samples -- here's the

1 number of workers, here's the number of
2 bioassay samples by quarter, and then the 3 workers by quarter, and what the percent of

4 workers that have at least one, two, three,
5 four, or more than four bioassay samples in
6 that particular time period.

8 this is that almost -- over 90 percent of the
9 workers have at least one, and 25 percent or more have more than four bioassay samples each quarter -- I'm sorry -- each year. Not each quarter, each year.

Starting with page 17, is a -- and I don't want to spend a lot of time on these graphs because they basically tell the same story that I just did, but in a graphical way.

So you could look at it and quickly get a picture of -- one that's especially useful, just to get a quick snapshot, is go to page 18. There is a graph. And it's got a blue color line and a red color line. And this is the number of -- we're

1 comparing the number of unique social security
2 numbers, which is the blue line, against the
3 number of -- the people that have bioassay
4 samples.

7 bioassay samples. They track each other.
8 This confirms the statements that you folks
9 have been making.
And you can see up through 1980, just about everybody has at least some Now, you do see a deviation -- as you go past 1985 -- where the number of workers on site versus the number of workers with bioassay samples, it looks like about 50 percent. Now in my opinion, that means -okay, half the workers, for some reason, were not bioassayed in those years, but half were.

The question becomes, is it
possible some of the workers that were not bioassayed could have been workers that had higher exposures than the workers that weren't bioassayed? This is a question someone could reasonably ask.

1
2 question. Starting in 1989, only workers who
3 had the potential to see 100-millirem
4 exposures were required to be monitored per
5 the change in the regulations. So they were
6 very well vetted and considered to be on the
7 bioassay program or not.
8

11 frequently in the process area -- let's say I 12 have the potential to receive 100 millirems -13 and that was based on an analysis of their -DR. NETON: I can answer that

And people who worked on what was called the clean side were certainly not monitored. People who worked -- were

DR. MAURO: So a policy change
occurred.
DR. NETON: It was a regulatory
change.
DR. MAURO: A regulatory change.
DR. NETON: 54(a)(35), 54(a)(11)
was issued.
MEMBER GRIFFON: How that was implemented is a question at several sites.

1

5 -- you can see before that, before 1980, it 6 looked like the policy was, everybody gets a 7 bioassay sample.

DR. NETON: I know exactly how it was implemented because that's when I started working there.

DR. MAURO: Okay. And before that

DR. NETON: There were no
controls. I mean out back, no controls. The areas were not cordoned off, the radiological areas, as well as they were after the change in the regulations when you had posted regulatory areas, restricted areas.

MR. ROLFES: Also keep in mind, John, that -- the SEC class that we evaluated was for the years of 1951 through 1989. So if we're having an SEC discussion, really what happens after '89 is, you know, for a site profile -- it's technically a site profile issue. So I want to point that out.

DR. MAURO: We haven't gotten there.

1

2 several pages of graphs. The recurring theme 3 is, a lot of people have bioassay samples.

5 more points to make and then we're going to be 6 ready to discuss this. 21 in your coworker model, it has to do with --

I'm not going to -- it goes on for

Let's move on to -- we've got two

Let's go to page 23. It's an
important page. This is where we start to
talk about whether or not it makes sense to do any sampling. And taking into consideration the things we've discussed.

On page 23, what we say is okay, if there is any -- I'd like you to -- put your finger also on page 31. So open up to page 23 but also put your finger -- sorry.

PARTICIPANT: This is a test, right? Dexterity?

DR. MAURO: Let's just stick with 23 right now. Stay with me. On page 23, what we did is say listen, if there's any weakness we know that you've rolled up all different

1 workers and we know you've rolled up all the
2 different job categories.

4 there groups -- the question is are there
5 groups of workers that have bioassay -- have
6 intakes of uranium that are substantially
7 higher than the intakes that would be
8 represented by a quartile, notwithstanding the
9 fact that they probably don't exist because
10 you are claiming that 90 percent -- and it's
11 true -- 90 percent of the workers.
I'm going to leave -- I want to put that aside for a minute. I'm looking at this as a purist, saying -- listen, how do we find out if there are groups of workers that either had job functions or worked in buildings at given periods of time where they may very well be different than your coworker model. Their data shows they are different than the numbers you've picked.

This table starting on page 23
tries to answer that question. Let me tell

1 you what you're looking at. In that table,
2 you'll see -- the very upper left-hand corner,
3 it says 1953 and it says Building No. 1. So
4 this is the first time we're looking at a
5 little more granularity.

7 database -- and we have the folks on the line
8 that did the heavy lifting and they could give
9 you a little bit more of how this was done -10 but we were able to go in and start sorting on

11 the data in a way where we could say, oh, no,

21 be different than the overall coworker model.
The number 181 is simply the ratio

1 of the doses to the workers in that strata --

4 Okay.

DR. NETON: Intakes or doses?
DR. MAURO: This is excretion.

DR. NETON: Excretion or intake?
DR. MAURO: Samples, sorry, yes,
it's samples. It's bioassay samples.
DR. NETON: So it's the 50th
percentile of what?
DR. MAURO: Of the --
DR. NETON: Excretion?
DR. MAURO: Picocuries per day in urine. Bob, do I have that right?

MR. BARTON: I'm sorry, John. Can you repeat the question?

DR. MAURO: Yes. A new question was asked, and I think I have the answer but I'd like you to confirm.

In Attachment B, page 23, we have numbers -- it says, for example, 181 -- do you see that one in the upper left-hand corner -the very first number that is shaded?

1
2
3 of -- that is an expression of the excretion
4 rate of uranium in that group of workers for
5 that -- Building 1, 1953 -- the median for
6 that group versus the median or the 50th
7 percentile for the excretion rate in the 8 coworker model.

MR. BARTON: Yes.
DR. MAURO: Okay. That's a ratio

MR. BARTON: I believe that's correct, John. I really think that Harry Chmelynski took the lead in compiling this.

DR. MAURO: We're going to move on, but somewhere along the line, he needs to confirm that as a fact -- not intake but excretion. I guess that is the question.

MR. CHMELYNSKI: Yes, these are excretion rates, John. This is Harry Chmelynski.

DR. MAURO: Thank you. Okay, got you. So, okay, what we're saying is the 50 percent -- it turns out -- let's put that -1953, Building One -- what we're saying here

1 is 32 urine samples were collected. See that
2 thing in parentheses below the 181? And there 3 were 13 workers.

4
5 could pull data on 13 workers. We know there
6 were 32 urine samples taken in that year from
7 workers in that building. And it turns out
8 the median excretion rate in the urine for
9 those workers was 1.8 times higher than the excretion rate associated with your coworker model.

So we started to say, you know, are there places -- are there buildings and years -- where that subgroup had excretion rates, the medians, which are substantially higher than the ones in the coworker model? And the answer is, well, here are some. And we use substantially a factor of 1.5 .

So any place where that ratio -the number in that table is more than 150, we colored it. So you can start to get a feel where okay, it looks like in this building in

1 this year things were -- exposures were
2 somewhat higher -- excretion rates were
3 somewhat higher than what the coworker model
4 would capture.

6 conclusions. Just giving a factual piece of
7 information.

8
9

18 numbers.
1.81?

I got you.
that?

Paul?
MEMBER ZIEMER: Is it 181? Or

DR. MAURO: It's 181 percent.
MEMBER ZIEMER: 181 percent, okay.

DR. MAURO: Harry, why did you do
(Laughter.)
MR. CHMELYNSKI: I hate decimal

DR. MAURO: It's 1.81, okay.
MEMBER ZIEMER: Got you.
DR. MAURO: All right. Now, all
right, so what do we have here? It goes on

1 for several tables. All right -- DR. NETON: I had a question on
that.
DR. MAURO: Okay. DR. NETON: When you had quarterly
data, '53 had only annual data. When you get
down to the years where you had quarterly
information, how did you compare the quarterly
values to your annual values?
DR. MAURO: Harry, you rolled those up. Harry, please?

MR. CHMELYNSKI: Yes, this is compared to an average of the quarterlies in Table 2-1 of our report, which --

DR. NETON: So you took an average of the quarterly values and compared it to the median value of all --

DR. MAURO: The median -- yes, the average -- you've got median values and I guess you took that --

MR. CHMELYNSKI: Yes, the average median --

1

2

3 denominator.
4
5 that's a good comparison but --

21 average of the medians against the median of
DR. MAURO: The average median. MR. CHMELYNSKI: -- in the

DR. NETON: I'm not sure why

DR. MAURO: Well, that's what we did. The point is to understand what we did. You know, we took the average of the medians when they are quarterly and compared it to the --

DR. NETON: Well, why wouldn't it be a better comparison to compare the quarterlies?

DR. MAURO: Well, we don't have quarterlies. We're not at that level of resolution here. In other words, when we grouped them by building, we could not go to quarterly. There just wasn't enough data.

And so we had to work --
DR. NETON: So you compared the all the values?

1
2 granted that there might be better ways of
3 doing it --
4
5 that works. Okay.
6
7 This is an index of all their buildings and
8 time periods where there is some indication
9 that perhaps -- at least in those time periods
10 in those buildings -- the excretion rates for
11 the workers might be somewhat higher than what
12 your coworker model would assign to them.
DR. MAURO: As an indicator --

DR. NETON: And I'm not sure how

DR. MAURO: Think of it like this.

That's all it is. An indicator.
DR. NETON: Yes, that's not surprising.

MR. ROLFES: Once again, we have to also keep in mind that there could be additional data in that individual's file for the next year or for the next quarter --

DR. MAURO: Right, yes.
MR. ROLFES: -- which would have
to be considered.

1
2 We're getting there. One thing to keep in
3 mind is that the threshold of comparison was
4 set at 1.5, 150. You know, any threshold that
5 you set like that is going to have some
6 element or arbitrariness but, you know, it's 7 a fairly high threshold. It wasn't like ten

8 percent or 20 percent more.

21 One was -- a uranium refinery. So you'd
DR. MAURO: We're getting there.

So I think it will give you an approximate idea of where or which class there might be some issues in terms of comparing it to the median, rather than as some kind of absolute indications of a big problem.

It's designed to map out which class you might pay attention to, in terms of your coworker model, not being claimantfavorable.

DR. NETON: Okay. It's no great earth-shaking surprise that this heterogeneous population of workers, based on where Plant expect higher samples.

1
2 doing is, we're collecting information and
3 sorting them in a way that allows everyone to
4 get a bird's eye view of what do we have. And
5 let it speak to us. And let it tell us
6 whether or not there is anything that is
7 surprising? Is there a need to go further
8 from here? Are we done? Or is there some
9 sampling, some different kinds of things we 10 could do?

21 of them to be higher and half of them to be
But a lot -- in other words, there is a lot of information here that could start to lead you down a path of -- where do we go from here. We're not done, okay.

MR. MORRIS: Can I -- are you going to clarify for us -- what would randomness itself have done? Has there been 100 percent uniformity? No differences in any plant? We would have still gotten some -DR. MAURO: You would expect half lower.

1
2
3 being, though, are there any places where --
4 if there is any place where you are -- say,
5 hmm, it looks like, for example, in 1956 in
6 Plant No. 2, the median excretion rate was 2.5
7 times higher than what it would have been
8 assigned to those workers in that --

21 perspective on what this paper is about, you
MR. MORRIS: Right.
DR. MAURO: No doubt. The idea

MR. MORRIS: And is that statistically surprising? That's my question. How would you even judge if that would surprise you or not?

DR. MAURO: Well, I'm not making a judgment. I'm not trying to make a statistical statement at this point in the process. All I'm trying to do is start to identify pointers that might lead us in a direction that could be helpful to us in the end.

MR. MAKHIJANI: Let me give some know, in light of the kind of comment. This

1 paper is not the end result of having analyzed
2 this coworker model according to a sampling 3 plan.

4
5 present some idea of job types and plant
6 placements of workers, to provide the working
7 group with a framework for a sampling plan
8 that we would carry out and what you might
9 expect at the end of it.
So this isn't to be judged as some
kind of conclusion that SC\&A made about the validity of the coworker model or whether you can or cannot do those things.

It's simply a response to the working group's direction -- or at least what we understood to be the working group's direction -- as to whether they wanted to go there and have an analysis of this step.

DR. MAURO: Just to keep that in mind. So that's the purpose of this paper.

MR. ROLFES: Another clarification I just want to point out as well. Our

1 coworker model does not selectively choose
2 what plant the individual worked in. We
3 consider all data for that given year.
4

5 3, 4, 5, 6, 7, 8, and 9 were all lower than
6 the 50th percentile -- the excretion rates
7 were all lower than the 50th percentile.

9 Plant 2. Our coworker model uses all plants. 10 So we have much more data that indicate lower 11 than 50th percentile excretion rates. 21 asked ourselves, you know, by now, what did we DR. MAURO: And in this table -- I mean that's what is useful about Attachment B. It shows you which years and what plants were less than 100.

DR. NETON: Let John finish. I
mean, I think he's got a good point. Go ahead, John.

DR. MAURO: Okay. Now, one more time. Go to page 25. The last question we do? We started to get a sense for how

For example, for 1956, Plants 1,

The only one that exceeded it was

1 different it was in different buildings, as
2 compared to the coworker model, which was a 3 roll-up across buildings.

4 And we see that yes, it looks like
5 in some years in some buildings the excretion
6 rates, at least for that year and that
7 building, might have been a factor of two
8 higher, on that order.
And I'm not going to draw a
10 conclusion but my inclination is --I'm not all
11 that surprised, you know, given that year and
12 that building, it's a factor two high. It's
13 not a factor of 100 higher. It's a factor of
14 two higher.

17 to show you.

19 important. Go to page 25. It turns out we 20 were able to go into the HIS-20 database and 21 sample by job title. It turns out there are 22 a lot of job titles.

We did one more thing that was

And here's where judgments comes
in. You know that's one of the things I want

1

2 you'll see on page 25, we were able to sort on
3 the job titles. We have 26 job titles here
4 where we have been able to pull data. And,
5 for example, the millman, I'm not quite sure
6 what a millman does --

9 there's a chem helper. The number one -- what
But what we were able to do,
\qquad we found out is that while we were able to get 133 samples -- and this crosses all buildings and it crosses all years -- remember we were not able to get a high level of resolution here, so we did what we could with the data that was there.

And we said well, if we go in and sample millmen in the database, we were able to get 133 samples. And we found out what the microgram per day excretion rate is: 110. So we now know, or at least we have an indicator of which categories of workers had the highest potential for exposure. And we're looking at

1 it in order, from high to low.

3 called millman -- it turns out that excretion
4 rate is well above, you know, any of the -- I
5 think just about all of the default excretion
6 rates, in terms of micrograms per day. I
7 think there may be one number that's higher -8 a few numbers. In other words, that's up

9 here.

11 percentile -- if you look at the 84th

15 -- that's up there.

19 based -- model is based. And we discuss it.
20 The text talks about it.
And that -- the work category

In other words, this 84th percentile for the millman, then you look at the 84th percentile in your coworker data set or excretion rate, you find that that's pretty

A good way to do it is to go back
to the page that gives you, you know, the excretion rate upon which your coworker is

And the one tab that is -- sort of
up there. It's higher than most of the

1 excretion rates that you report at the 84th 2 percentile in the different quarters, okay?

4 keep in mind that 84th percentile excretion
5 rate has a default minimum of a GSD of 3 .

21 workers were somewhat higher. In some cases
DR. MAURO: Right.
DR. NETON: So if you calculate some GSD that's less than 3 and imputed at the 84th percentile, you're going to be low, from what we would use.

MR. MAKHIJANI: Actually the problem that John is describing with the reverse effect. That there are samples that are higher than your artificially high 84th percentile.

DR. MAURO: Right. So what do we have? I mean, we're done. What do we have? What we have here is, we've identified time periods and buildings and job categories where the excretion rates for those groups of a factor of two, maybe a factor of three

1 higher, than the corresponding time period in
2 your coworker model. All right?
If we're going to design -- now
4 here's where we get to the nub of the matter -
5 - would it be productive to go in and say
6 okay, let's randomly sample from the category
7 called millman, a trend where we just go in
8 and randomly pick workers, millman, chemical
9 helper, painter.

Let's randomly go in and go back to the earlier tables where we had -- the ones with the shaded areas which showed which years -- let's randomly go in and pick some of those workers in whatever those years were that had more than a factor of two and randomly look at some of those.

Grab those workers. Let's
reconstruct their doses using their data, using their data, and see what we come up with. Okay?

Now, what's going to happen when we're done? Some of them are going to be a

1 little bit higher and some of them are going
2 to be a little bit lower than your coworker 3 model would assign to them. You would expect 4 that.

6 time.

21 wasn't bioassayed. DR. NETON: Five percent of the

DR. MAURO: Yes.
DR. NETON: Well, randomly five percent of the people would be higher, right? DR. MAURO: So now let's say it turns out that when you do that -- when you do that you find that your coworker -- this is the thought problem -- let's say it turns out in a large number of cases when we sample from those subpopulations, we come up with intake rates or doses -- let's say doses, lifetime doses, you know, his working life -- which are substantially higher, factors of three, four, five times higher than would have been assigned to that worker if it turns out he

But he was, of course. But if he

1 wasn't. Now what do we do with that
2 information? Does that mean your coworker
3 model is not protective enough? In other
4 words, biased by using the full distribution. If this guy turned out to be a person that didn't have any data and you were to use the coworker model on him, you would underestimate his dose by this factor. Now, you could argue and say, but no, he does have the data, and we wouldn't do that. Then the question becomes, well, is it possible there might be some millmen -- and is it possible there might be some workers -that worked in that time period that don't have bioassay data, where you would have to do this.

And in those cases, you would
underestimate that person's dose. This is
where -- this is the question that I put before the work group -- whether or not it is worth going through that exercise.

I can't see -- now the only other

1 thing we can do, other than that kind of
2 sampling plan and see what it tells us when
3 we're done, is the kind of thing you just
4 described. You know, when you're done, you
5 know it's really not going to tell you very 6 much.

8 is, no, let's go find those workers that have
9 no data. And let's see what kind of job they
10 had. Is it possible that some of them worked
11 in this building, too, in that year -- or some
12 of the millmen and we don't have any bioassay
13 data. That might be a more informative piece 14 of work.

21 here, given this information? efficient.

DR. MAURO: And a lot more efficient. So what I'm trying to do is the best I can to present to the work group options. Where would you like to go from

DR. NETON: Certainly a lot more

I think everyone understands what

1 was done and what we have.

3 couple things before the work group
4 deliberates is -- I can guarantee you that you
5 can go and find dose reconstructions to be
6 done for millmen that have high bioassays that
7 are much higher than this because we have
8 their data. I think that that's probably true
9 that we have most of the data.

11 that SC\&A likes to point to, I think, of 12 cohort badging or cohort sampling. I think 13 they really did sample the people with the 14 highest potentials for exposures throughout 15 the plant. I think there is a lot of good 16 evidence.

18 We don't think they really did. So then, like
19 you said, you go back and look at the five or 20 seven percent of the people that have zero

21 bioassay data and try to tie those job titles 22 with --

1
2

5 model as we proposed, it potentially
6 underestimates exposure.
DR. MAURO: Job categories. DR. NETON: -- or time periods or whatever and see, if NIOSH reconstructed those doses with the application of the coworker

DR. MAURO: That would be a judgment call. Because you'd have to look -he worked in that building and he had his job category, right off the bat, you would -- see, I would say that you'd have no choice but to use the coworker model. And the evidence is, for that category and in that time period, that's going to underestimate -- you know, that's not going to be a good model.

DR. NETON: Right. But what I'm saying is without knowledge that that has actually happened, you know, there's a lot of extra work going on here to pull out and parse out mill operators and chemical operators and say yes, those had higher exposures than the 50th percentile of distribution.

1
2 acknowledge that. I mean that's a given in
3 this model. And then using the 50th

5 which we applied the coworker models. This is
6 will come up in that 50th percentile
7 discussion that we have yet to have, this
8 technical call.
And I'd say yes, we know. We percentile, you have to look at the people to

Which class of workers do we apply
the 50th percentile with the full
distribution, not just the 50th percentile?
And those workers are picked for that distribution based on a review of the characteristics of their exposures.

Oftentimes there are people -- who may have been clerks who had visited the area, walked around and did some inventories. There may have been security guards who did some night walk around. That sort of thing.

I would be amazed if we would take
a chemical operator who worked six years at Fernald in a very active timeframe and give

1 him a 50th percentile.

4 would do that.

6 told --

8 possible --

21 there. But the issue is, you know, it's
22 DR. MAURO: Right. DR. NETON: I can't believe we DR. MAURO: This is what I was

DR. NETON: And it is quite

DR. MAURO: -- was the answer. To me, if I was sitting on the other side of the table, I would say if I do find some workers that have no bioassay data but they are millworkers, or they worked in this year in that building -- where I know that something is different there than my coworker model -I sure as heck wouldn't give them the full distribution. I may give them the 95th percentile.

DR. NETON: Exactly. And I think we do that in a judicious characterization possible -- I mean we believe that the highest

1 exposed workers were monitored. But we vow it
2 is possible that records could get lost. I
3 mean it's possible we could get a record from
4 a guy that says chemical operator, never been
5 monitored.

6

9 you off.

21 certainly do an easy query enough. Just enter
DR. MAURO: Well, that would certainly raise a flag in our reconstruction. DR. NETON: I'm sorry, Mark, I cut MEMBER GRIFFON: Oh, no, I was just going to ask can I -- can we -- I mean I think that that makes a little more sense actually. But the question I have is -- and I think Mark alluded to this -- how many claims to you have --

DR. MAURO: Right.
MEMBER GRIFFON: -- with no data.
And then if you know that, you must be able to pull those out.

MR. ROLFES: Right, yes, you could NIOSH OCAS claims tracking system --

2 those --

21 than 50 percentile -- or less than 50 percent
MEMBER GRIFFON: And it shows

MR. ROLFES: -- which I did.
MEMBER GRIFFON: Oh, okay.
MR. ROLFES: Because John had cited the lung cancers, I queried by cancer type and whether or not the claim was above or below 50 percent probability of causation.

By doing that search, I got 16
claims that had the lung cancer case that was less than 50 percent probability of causation in dose reconstruction.

Furthermore, I went through and looked at job categories and whether or not there were bioassay or any monitoring data. I also looked at the data diagnosis. because the latency can play a large part, as we discussed.

In looking at that, there's potentially eight individuals that had less probability of causation that had a lung

1 cancer where a coworker intake model could
2 apply.

5 the individuals were on-site for days, a
6 month. If you look at the job categories,
7 there are absolutely no chemical operators, no 8 millmen --

10 my -- that sort of gets to my question. But
11 I'm asking all cases here. But is that -- it
12 seems like that is cumbersome. You had to go
13 to the raw records, right, and look? Or do
14 you -- you can't really query NOCTS, can you?
MR. ROLFES: Well, what you would have to do --

MEMBER GRIFFON: To find out which claimants have no bioassay data, you have to go through them one by one, right?

MR. ROLFES: What you would have to do is query NOCTS for the cases that hit your requirements. If you're looking for, you

1 know, for example, lung cancer cases --

MEMBER GRIFFON: No, I'm looking for all cases.

MR. ROLFES: Okay. All cases, we have --

MEMBER GRIFFON: All claims where they have no bioassay.

MR. ROLFES: -- we have 1,040 claims total for Fernald. Of those 1,040, we've completed 958 dose reconstructions already. So we've completed greater than 90 percent of the dose reconstructions.

Of those dose reconstructions completed, 40.4 percent have had a probability of causation greater than 50 percent. So we're quickly limiting the number of -- we've got about 571 claims that have less than 50 percent probability of causation. And we've got 16 that are active in dose reconstruction right now.

So if you were going to query
NOCTS, you would really only want to query say

1571 -- say 600 claims that have less than 50
2 percent probability of causation.

6 asking.

21 disagree with Jim's point. If we can find
MR. ROLFES: Right. It could be possible for ORAU --

MEMBER GRIFFON: Because I don't those claims, then you look at the job types

1 in there. And then you go back to this kind
2 of system that John is talking about.
MR. ROLFES: It might be possible
4 because --

6 millman in there, then it raises a question.
7 If you see these other jobs, then we have to
8 make an assessment on if your coworker model
MEMBER GRIFFON: If you see a - -

DR. NETON: And it is quite possible that in some of those cases, we wouldn't even use coworker model. We could use the efficiency process and if it's not a lung cancer -- and it's, say, a prostate or something -- we could use some very large, overestimated dose that is not even required to get into the coworker arena.

MEMBER GRIFFON: I'm just asking just to figure out over the history sort of, who didn't they bioassay? Who didn't have bioassay? Because I don't care about POC at all in this. I just want to know who didn't

1 have records? Who had records? And then what
2 types of jobs are in those ones that didn't
3 have records?

4

6 say all right if there's no -- and I expect
7 you are right, Jim, there's no chem operators,
8 there's no, you know -- they did have -- yes,
9 they have them -- and if we find that out, I'd 10 like to see a list of like what job types fall

11 under that category of didn't have any records
DR. NETON: Yes, I agree.
MEMBER GRIFFON: And then we can over their whole course of their being at Fernald.

MR. ROLFES: That may be something that is already created. Our dose reconstructors at ORAU -- for every claim that they receive -- they do take all of the data that is received from the Department of Energy, both internal and exposure information, and populate that into a spreadsheet for each individual claim.

I don't know if it has, you know,

1 the individual's job title because I'd have to
2 take a look at that. But it may be possible
3 for them to quickly -- they may already have
4 something. I don't know.

6 now, Harry, when you sorted on millmen and you
7 went in, you know, I guess every one that you
8 sorted, by definition, the ones that you were
9 sorting, did that mean that they had to have
10 bioassay data? Or are there some millmen that
11 had no bioassay data?
12

18 have no bioassay data? Is that something that 19 is trackable?

MR. CHMELYNSKI: As far as I know, what you are asking is concerning people who are not in HIS-20.

1
2 my question.

6 there. That's why I asked the question. They
7 wouldn't be there, okay. Thank you.

11 out --

21 I was concerned we would lose all that data.
DR. MAURO: Well, I guess that is

MR. CHMELYNSKI: Yes, they
wouldn't be in HIS-20.
DR. MAURO: They wouldn't be

DR. NETON: I think we could go
back and look at the database in some way automated -- in an automated fashion and pull

MEMBER GRIFFON: You mean the NOCTS database?

DR. NETON: The NOCTS database.
And it actually may be outside of NOCTS.
My recollection is that ORAU is
coding all the bioassay data. There is a reason. We asked for them to do that early on for future reference because we're developing this huge amount of exposure information. And So I believe it has been coded into

1 spreadsheets as Mark suggested.

6 have bioassay. And if it is -- as we suspect
7 or believe -- it's a few in number, let's say
8 1,000 cases, if it's 15, maybe 100, it
9 wouldn't be that onerous to go back and look 10 at those one by one and pull out the job 11 titles.

19 idea.

21 They're not just here.
But it would certainly give us an

DR. MAURO: Well, there are lots.

DR. NETON: And they are not

1 uniform either. 4 not have any bioassay data. So it doesn't --

6 year.

8 year.
DR. MAURO: We know, for example, in 1957, 2.4 percent of the 4,000 workers did

MEMBER ZIEMER: But only for that

DR. MAURO: Exactly, only for that

DR. NETON: And that's another part of the issue. But, again, I would also question in some ways -- were all the workers who were listed as working in Plant 1 really working Plant 1 in that year -- because we know that human resources can kind of lag behind. And if it is a matter of the supervisor saying, this guy is on loan over at Plant 5-- I'm not saying it's wrong. I'm just saying that there is some opportunities for disconnects there.

MS. BALDRIDGE: I have a question.
MR. KATZ: Hello. Who is this speaking? Sandra?

6 brief windows out of, you know, an entire 7 period of time.

9 to whether those samples represent the
MS. BALDRIDGE: Yes. You know most workers, you're talking about the bioassay samples, but that only demonstrated a brief window. If they were -- had four pieces of data for the year, that's only four

Were there any correlation made as exposures during the high or low emission periods based on the MAC levels that are presented in the historical plant documents?

DR. NETON: Okay, Bonnie? Is it Bonnie?

MR. KATZ: Sandra.
DR. NETON: Okay, Sandra. I'm thinking of my other working group. Sandra, this is Jim Neton. I think we might have talked about this before.

The way we use bioassay data is if
a person had a sample today that has X amount of uranium in it, we would actually do a

1 calculation to determine what's the maximum
2 amount they could have had since their last
3 sample and still be excreting that amount in
4 their urine today.

6 exposure occurred during the entire duration
7 between the last sample and the current
8 sample. In other words, it's kind of a
9 bounding estimate that we would use as a
10 chronic exposure estimate.

11
12

MS. BALDRIDGE: But there are periods of time between those samples that could have occurred with these high MACs --

DR. NETON: Right.
MS. BALDRIDGE: -- if they were not -- if their sample was not given at the appropriate time --

DR. NETON: Well, the uranium --
MS. BALDRIDGE: -- based on the exposure.

DR. NETON: -- the uranium has the property of being excreted over a long period

1 of time. And we know how that excretion
2 behaves. And we can model that and do a very
3 reasonable prediction of what that intake --
4 what the maximum intake could have been in a
5 person only excreting a certain amount on the
6 day they were sampled.

MS. BALDRIDGE: And we get back to the excretion --

DR. NETON: Right.
MS. BALDRIDGE: -- issue --
DR. NETON: Yes.
MS. BALDRIDGE: -- which I've brought up before. You know if you don't know who had renal damage, you can't know that their excretion rate was 100 percent.

DR. NETON: Right. At the levels we're discussing here, at least on the model that we're talking about, these were not sufficiently high to cause renal damage at least in our opinion.

MS. BALDRIDGE: But all the workers who possibly had renal damage have not

1 been identified to know whose records
2 represent the 100 percent excretion and whose
3 records potentially show lesser levels of
4 excretion.

6 discuss this, Sandra. This is Mark. And I
7 believe we did discuss that. And I believe
8 Hans Behling had prepared a white paper and
9 cited a few references as well.

21 question, Jim, you're saying that the uranium
MR. ROLFES: I think we did

And I believe we did discuss that in pretty much detail. And I think we came to resolution on that issue.

DR. MAURO: Yes. And I read the transcripts last night. We spent quite a bit of time reviewing the literature on that, reviewing autopsy data. And the outcome of that was that this issue has been put to bed. That it is not going to affect the ability to reconstruct these doses.

CHAIR CLAWSON: I've got a stays in your body and is excreted. How long

1 is safe? 4 is in your lung. And the way we work it is we

5 would pick the most claimant-favorable 6 solubility class.

21 it in '58 if you hadn't had any bioassay?
DR. NETON: Well, it depends on -if you inhale it, it depends on how soluble it

For example, if it is in your lung and we're trying to irradiate the lung, we're going to assume it stayed there for a very long time to radiate the lung and give you the most dose.

If it is a systemic organ like a kidney or a liver, we often times would assume that it would just leave the lung, concentrate in the kidney, and deliver that dose. So the amount of time it stays is dependent upon the type of material.

CHAIR CLAWSON: Well, if you had it in '57, if you had a urine sample in '57, a small amount of uranium, would you still see DR. NETON: Well, there's a --

1 maybe. It might be below the detection limit.
2 And that's another concept that we use.
We would take the detection limit
4 of the system and say well, we don't know what
5 it was. It could be below that but we'll
6 assume that it is equal to the detection
7 limit. Or half the detection limit, I've
8 forgotten how we exactly modeled it. But
9 we'll acknowledge that you can't see zero.

11 know what it was but it certainly --
DR. MAURO: Wasn't more than this.
DR. NETON: -- it is not more than
this value, this bounding value that we would use based on the detection limit sampling technique that was used.

There's a pretty sort of standard health physics type of calculations. There's nothing exotic that NIOSH has invented here. This is a --

MR. ROLFES: Even for a sample that's collected, you know, this is a little

1 elaborate -- even a sample that's collected
2 say 50 years after an intake potentially
3 occurred, I mean this is pushing it but if you
4 have an intake -- you know, back in 1950 and
5 you have a bioassay sample that's collected
6 out here in year 2000, for example, it's
7 pushing it and it's going to be highly
8 uncertain but this can be indicative of an
9 exposure that was incurred 50 years ago.

11 interpret this result -- and you can get a
12 huge intake, you know, going back here -- the 13 more data you have, the better you are able to 14 refine that.

21 you have them one day apart, would you tend to
22
MEMBER GRIFFON: Would you actually do that?

DR. NETON: It would be more of a chronic --

MEMBER GRIFFON: A chronic, right, yes. I'm not sure that you would always -- if

1

DR. NETON: I think if it was a chemical operator, we would.

MEMBER GRIFFON: You would? Yes?
DR. NETON: It it was a chemical operator, we would probably do that --

MEMBER GRIFFON: Because in that case, you're going to be over your coworker model, a lot over your coworker model.

DR. NETON: Right. But see if it was a chemical operator or a mill operator, we would do that. If it were a secretary and there was a determination bioassay sample, the only sample we had, we either would use a coworker or maybe even the ambient environmental depending on how we could bracket their work environment.

MEMBER GRIFFON: So it depends.
MR. ROLFES: You would have to consider the facts in each individual claim, on a case-by-case basis.

MEMBER GRIFFON: Can we take a break?

1

2 to say I don't think that your results here
3 are surprising there, John, I think it is what
4 you would expect in terms of comparing it with
5 coworker model and you've identified some
6 areas where possibly there could be gaps,
7 although maybe unlikely.
8
9 has suggested makes sense. Due to the small
10 number of un-sampled people, to go back and
11 characterize that.
12
MEMBER ZIEMER: I was just going

But it seems to me that what NIOSH

And if there are, for example, mill workers, and it's hard to imagine that they would work there for years and have no bioassay but, as you say, maybe records would get lost, but even if you had a case like that, you would handle it differently, would you not anyway?

DR. NETON: Yes, I would, definitely.

MEMBER ZIEMER: But in any event, I think it is probably worth looking at the

1 dataset from that point of view. It seems to
2 be more efficient --

5 characterize it and say are there really gaps 6 there.

8 that, yes.

21 would be chemical operators, mill operators,
DR. MAURO: Yes,
MEMBER ZIEMER: -- to go back and

DR. MAURO: I wish I'd thought of

MEMBER ZIEMER: Well, and this is helpful to point out that the possibility exists. And in a different situation, might have been very different. But this is a pretty robust dataset to start with.

DR. NETON: If you recall, there's a TIB, and I can't remember the number, way back when that we tried to delineate the type of job categories where the exposure may have been more administrative, almost non, intermittent, and then regular. And I'm pretty sure in that regular exposure category that sort of thing.

2 reconstructor to say well, this guy is in a 3 higher exposure group. And to give him the 4 50th percentile and the full distribution

5 would not not make very good sense.

21 again.
So that would tip off the dose
more than happy to go back and pull out --
MEMBER GRIFFON: That's what I was
going to say. I was going to suggest a break and come back with an action. But I'll just throw it out. I was going to talk to you on the sideline and see what makes sense.

But I mean my idea from this would be for NIOSH to have an action of finding -and I wasn't sure, like John, maybe initially I wasn't sure if it was too onerous to go back and find the cases with no data.

But if it is, you know, Jim seems
to think that it can be done so --
DR. NETON: Yes, Jim did it to us
(Laughter.)

2 the cases with no bioassay data, the claims
3 with no bioassay data across the Board. I'm
4 not saying less than 50, higher -- you know,
5 regardless of POC. I would say look at all
6 the claims and see who has no bioassay data.

8 method on
9 right now.

21 spreadsheet. And, you know, as I mentioned
MEMBER GRIFFON: So NIOSH can find

Even if you used an efficiency

DR. NETON: Let's try to quantify

MEMBER GRIFFON: Yes, we want to look and see the analysis. And then to the extent you can, determine jobs and buildings, question mark. I had a question on the building thing because of what you were saying. But what you can find out from that, yes.

MR. ROLFES: I don't believe that data would typically be entered into a before, we wouldn't selectively assign intakes

1 based on the plant. It would be an entire
2 year, we would consider all plants, all
3 intakes.
4 MEMBER GRIFFON: No, I understand
5 that. But for what we're looking at, we might
6 want to look at that if it was available. I'm
7 not sure it would be.

8

9

So, you know, there might be some ability to cross match these claims.

MEMBER GRIFFON: Mark, the reason I raised that is just what you -- and I think it is pretty unlikely. But if you go through this and you find 50 people with no data, and they all worked in Plant 2, you just said

1 earlier that Plant 2 tended to be higher, you
2 know. So that would be sort of telling. I
3 mean that would be a concern.

4
MR. ROLFES: Another interesting
5 thing, since we're mentioning Plant 2 and it
6 appears that there are some years that there
7 are higher excretion rates in Plant 2, keep in
8 mind that many of the employees in Plant 2
9 also worked in 3 because they were, in fact,
10 one plant -- two separate sides of the same
11 plant essentially, the same building.

13 do -- the follow-up action would be for SC\&A
14 to evaluate those people against the coworker
15 model. In other words, is the coworker
16 approach bounding? And there's some -- I
17 think there's some -- well, I mean I think it 18 depends on what you find with jobs and stuff

19 how that analysis is going to go.
But some assessment of that
21 outcome, I guess, you know, so if you see, you 22 know, I think this gets a bit subjective maybe

1 but because you are going to have jobs, and
2 you are going to have to say likely based on
3 our knowledge of the site, these -- the
4 coworker model would be bounding. That's a
5 little subjective maybe. But I'm not sure how
6 that analysis goes.

8 get this -- I think that makes more sense to
9 me anyway. I don't know what other members --
MR. MAKHIJANI: One thing that we might want to hear from Bob or Harry, to my memory -- I didn't do the pulling of the data, Bob and Harry did -- but I think the plant data are only available through 1961.

Bob? Harry? Bob?
MR. BARTON: Yes, Arjun, this is Bob Barton. The plant data -- it seemed to be a practice to label the bioassay sample with plant number up until about 2/1961. The problem with, you know, searching NOCTS is to get, you know, a subset of claims with no bioassay data, we have no idea what plant they

1 worked in because they don't have any bioassay
2 data. So it is kind of a Catch-22.
MEMBER GRIFFON: Okay. So we may
4 not be able to get a plant, yes, yes. But at
5 least we can get the jobs.

7 only went through ' 69 anyway.

8

9 do.

11 have the CATI -- you know, if it's true,
12 there's a small number of samples on the CATI
13 and we know which buildings did you work in
14 and we go through and develop an exposure --
15 not exposure but a history, job history.
I don't know if I'm signing up
NIOSH for way too much work.
MEMBER GRIFFON: It's probably the case. If it's a small number, then it might be --

MR. ROLFES: There's plenty of actions that we've already fulfilled. And I

1 believe we've responded with all the things
2 that we've been previously tasked to do, you
3 know all of the things that have been asked of
4 NIOSH to investigate and evaluate.

6 those requirements. We've even, you know,
7 even within the past month, I believe, we've
8 done a pretty good job in keeping up with all
9 the new white papers that have been sent over by SC\&A as well.

I don't believe we've issued
formal responses on all of them but we have prepared responses for those. And are prepared to discuss those.

I do want to mention once again that this evaluation report has been with the Board since October 25th of 2006. So we're in -- out past two years now.

CHAIR CLAWSON: Gee, that's new news. We understand that, you know, it's real difficult -- you know it's interesting. I sit here and I listen to -- we can do a lot of

1 bounding numbers over here and we can twist
2 them around here. We can do that.

5 what the outside people -- the claimants that
6 are looking at this. And a lot of them are
7 under-educated, just like me. And that is
8 that we are getting the best product that we
9 can out to them.

11 think they really work hard at taking care of
12 our issues and so forth like that. And I'm
13 the first one to apologize about the two-year 14 time frame. But it's something that we're 15 trying to get best products.

17 get it right.

21 you know. What's going on? What's the new
MR. ROLFES: I completely agree. I just wanted to point that out because I do, in fact, speak with people and explain this, issue that's coming up?

1
2 people and have to inform people of what the 3 current things that are being discussed, you 4 know. Questions have come up from claimants.

5 Why are they discussing this again? Didn't
6 they resolve that at the previous meeting?
And I do honestly speak with

So, you know, I'm trying to be honest with all the claimants that I speak with. And I want to make sure that we're doing our best job that we can to get them a timely answer.

So, if we could take a ten-minute break?

MR. MORRIS: What will be on the agenda when we reconvene?

CHAIR CLAWSON: Recycled uranium.
MEMBER GRIFFON: No, no. I don't know if we want to skip over -- while we're on this topic, I would propose we talk about the data completeness and validity. And just see where we stand.

I know that NIOSH gave a report.

1 It seems to be all wrapped together. Let's,
2 if we can -- can we finish that conversation?
3 And then move on to the recycled -- that is
4 what I would propose.

6 finish this one up. But the next thing that
7 is going to come up is recycled uranium after
8 we get this finished.
MR. KATZ: Okay. So everyone on the telephone, we're going to mute the phone for ten minutes. It's about 20 past 11. So at about 11:30, we'll get back going again.
(Whereupon, the foregoing matter went off the record at 11:20 a.m. and resumed at 11:38 a.m.)

MR. KATZ: This is the Advisory Board of Radiation Worker Health. It is the Fernald Working Group. And we have been on a short break. And we are reconvening now.

CHAIR CLAWSON: We appreciate John's report and Jim's and Mark's comments.

We need to come to closure on

1 this. And before we can do that, Mark's got
2 some issues he wanted to go over. So I'll
3 turn it over to you.

4

5 that topic, I mean my proposal for the
6 actions, that's what I would go with, I guess
7 -- do we have agreement on the action that
8 NIOSH is going to follow up on -- identify the
9 cases with no bioassay data?

21 going to follow up on this. Who is going to
22 follow up?
MEMBER GRIFFON: Yes.
CHAIR CLAWSON: Okay.
MEMBER GRIFFON: Yes, go back to that. And then, you know, the follow up would be for SC\&A to look at those -- most likely we're going to have job information, probably not building information, but whatever we have and --

MEMBER ZIEMER: I thought NIOSH is

2 follow up. And then subsequent to that they
3 are going to produce what I would expect is
4 sort of this listing --

7 not that big a number of people and what their 8 jobs were. And then SC\&A is got to then look

9 at that and make some assessment of whether 10 the coworker model would be a bounding

11 approach for those workers. That's the next 12 step.

MEMBER GRIFFON: NIOSH is going to

MEMBER ZIEMER: Oh, okay.
MEMBER GRIFFON: -- and hopefully

And then maybe, you know -- I'm not sure what we're going to get so there may be some subjectiveness to that assessment. But anyway, that's the sort of the two-step process in my mind anyway.

DR. MAURO: Just to clarify that a
little bit more.
MEMBER GRIFFON: Yes.
DR. MAURO: Let's say we do find some categories of workers, millmen, that have

1 no bioassay data which brings us to the end of
2 the story. If you don't find any categories
3 of workers that fall in those categories that
4 I had listed, those 26, let's say they all
5 have bioassay data, is that the end of the
6 story? Basically we couldn't find any? I
7 mean that may be the outcome of your
8 investigation. I don't know.

10 incumbent upon us maybe to discuss how we
11 would -- how the application of the coworker 12 model would bound the categories that we're 13 looking at.

14

DR. NETON: Well, I think it is incumbent upon us maybe to discuss how we

DR. MAURO: Okay.
DR. NETON: Yes.
DR. MAURO: Because it could be kind of lengthy but, you know, yes.

DR. NETON: Is the coworker model appropriate for the people who were using it? I mean that's the bottom line.

MEMBER GRIFFON: That's the bottom line. And then SC\&A can review that report

1 and that product.

9 it off and use the 95th percentile or some 10 other parameter? In other words, it becomes

11 a -- what I'm getting at is do we have
12 tractable route? If we do run into that, is
MEMBER ZIEMER: Because you could have future claims, I suppose.

DR. NETON: Yes, exactly.
DR. MAURO: As an SEC issue, okay,
if you do run across a person that had a job category that could be a concern and there's no bioassay data, would the solution be pick it tractable?

And if it is, is it an SEC issue?
I mean I know I'm pushing everyone but taking this to its logical conclusion, even if you do run into some cases where gee, this guy didn't have any bioassay data and he had a pretty serious job, what does that do to your ability to reconstruct doses?

MR. ROLFES: Let's also consider how is identifying a case where we have a

1 claim that we've completed a dose
2 reconstruction for that had a probability of
3 causation of greater than 50 percent, how
4 would identifying whether or not that case had
5 bioassay data, you know, be of benefit to us?
6 Or to that claim?
MEMBER GRIFFON: Well, we're
8 looking at this as a sample that's
9 theoretically representative of the overall
10 population of potential claimants. I know
11 that's the way I'm looking at it.

12
13
14

DR. NETON: I could see that
logic.
MR. ROLFES: Okay. I'm just
trying to, you know, make sure that we're doing the appropriate work rather than doing a large effort if we don't need to fully do that.

MEMBER GRIFFON: We don't want that.

MR. ROLFES: I mean I don't want to waste, you know, time if it's not going to

1 be helpful, you know.

3 John's question, though, I think is given that
4 we have somewhere in the vicinity of 400,000
5 uranium measurements on workers over a very
6 long period of time, I believe that there is
7 something we can do for any worker who doesn't
8 have bioassay data.

11 NIOSH could develop an approach regardless of

21 I think, John, what you are likely to find is,
I mean there's enough monitoring data for enough subpopulations out there that what was missed.

MEMBER GRIFFON: But I think the
other thing, from my standpoint anyway, I won't speak for the work group, but, you know, if you look -- you find say 50 cases and you find jobs that I would expect to have some monitoring data, then it raises the question of the completeness of the -- you know. So, you know, likely -- I mean -you know, maybe NIOSH will come back and say

1 we found these 50 people and most of them, by 2 job types, we believe they are fully covered 3 by the 50th percentile. There were these two

4 that seemed to have jobs in the chemical
5 operations areas, something like that. We
6 don't know how they got missed over the years.
7 But we would assign the 95th to them. That
8 would be their proposal.

And to me, that would probably be,
I would come back and say that's reasonable, you know. If they came back with 50 out of 50 that ended up in the high category, I'd say wait a second. Something is wrong here.

Why were all these people missed over the years? You've got so many samples. Why were all these people missed?

MR. ROLFES: Another clarification that I would like to ask is that the number of workers that we have, the 10,040, many of those claimants are also outside of the current SEC period that was evaluated.

So if we're concerned about a

1 special exposure cohort perspective versus a
2 dose reconstruction perspective, do we want to
3 include the population of employees that
4 worked that site from 1990 through 2007, you
5 know, 2008? Do we only want to consider this
6 as an SEC issue?

8 point. I mean yes. to do something, you know -changed again.

MEMBER GRIFFON: That's a valid

MR. ROLFES: I mean I don't want

MEMBER GRIFFON: Right, you're
right, after '89, some people were legitimately taken off. So, you know, things

MR. ROLFES: I don't want to, you
know, do a large analysis so that isn't going to be helpful for answering the question that we've been asked to, you know, to --

MEMBER GRIFFON: If the petition only went up through '89, then yes.

MR. MAKHIJANI: We -- Bob and Harry, correct me if I'm wrong -- I think we

1 only looked until 1989 because of the SEC
2 limitation. And I think these particular job
3 -- Harry, do these particular job categories
4 only go to ' 89 because after '89, the jobs
5 were different anyway. The decommissioning
6 and all that. You wouldn't have chemical
7 operator -- you wouldn't have all these jobs.

9 yes.

MR. BARTON: If I could just add a
little clarification to job title, you're right. They did change tremendously. However, in the remediation years, they did recreate the chemical operations folks under this HAZWOPER, you know, titles.

But like the maintenance functions basically stayed the same. And, you know, remediating the buildings and tear-down and what have you. But chemical operations did change immensely but they did bring them back.

MEMBER GRIFFON: Yes, I mean my opinion would be we should stop this at '89 if

1 that's easy to do. I mean obviously if --
2 well, John, I think if you add people that 3 started before '89 and worked through --

DR. MAURO: You would catch them.
MEMBER GRIFFON: -- you're going
to catch them anyway.
MR. MAKHIJANI: If there are no samples up to '89, then they would be -- well, that's why there are no samples.

DR. MAURO: But then that might be a problem.

MR. ROLFES: Keep in mind, though, if we have bioassay data for that individual in 1990, that would be sufficient in my mind

MEMBER GRIFFON: Well, that's what I was saying -- that's what I was trying to grapple with. So you might end up -- yes --

MR. ROLFES: I'm just making sure we put these things on the table so that we do what we're being asked to do and making sure that we're, you know, doing it as efficiently

1 as possible.

5 you might want to think through that.

6

7 about it and make we do it in a rational
8 manner.

18 carryover.
MEMBER GRIFFON: Yes, I guess our focus would be the SEC period obviously. But if you -- how you present it for each person,

DR. NETON: Yes, we will think .

CHAIR CLAWSON: I guess I'm looking at what kind of --

MEMBER GRIFFON: That was the action, I think, right?

CHAIR CLAWSON: Up to '89 but --
DR. NETON: At a minimum '89. We may actually do a little more if it looks like

> CHAIR CLAWSON: Eliminate

DR. NETON: -- carryover. But certainly the SEC period we will evaluate. It really comes down to can we reconstruct their dose. And if there is something in 1990

1 that's useful, we won't cut it short. kind of --

MR. ROLFES: Right. There could be people that are beginning employment in '89, you know, may have worked, you know, a few months in training, et cetera, prior to going in for decontamination.

DR. NETON: Okay. That would be a good idea. I just want to mention to John, this is a good start on the technical call that we're going to have on this 50th percentile issue. And these are exactly the

DR. MAURO: The conversion issue
that I intend to --
DR. NETON: This is OTIB.
DR. MAURO: The OTIB where we use the 50th percentile, full distribution. That's part of the procedures working group. DR. NETON: Yes, and it is a very similar issue. And a good start for that

MEMBER GRIFFON: Now we have

1 technical calls in the day of our group
2 meetings.

4 what the --

6 for that one, yes.

17 wanted to make sure. Okay. It just seemed 18 like all of a sudden I'm trying to stay on

19 focus of where this -- how the sampling plan 20 evolved.

CHAIR CLAWSON: So we're clear on

MEMBER GRIFFON: Yes. The action

CHAIR CLAWSON: Okay.
DR. NETON: I can't give you a completion date right now.

CHAIR CLAWSON: I do have one question. Does this sampling plan coming in and so forth like, you guys already came up with the coworker data, the coworker model?

DR. NETON: That was developed in 2007.

CHAIR CLAWSON: Okay. I just

DR. NETON: The coworker model surfaced and then --

1
2
3 items I had, just to continue from before
4 break, was the question on the validity of the
5 data. And this goes back to the -- and, you
6 know, this has been raised by the petition
7 but, I mean, it's actually part of our
8 Advisory Board procedure now to consider the
9 validity of data.
CHAIR CLAWSON: Okay.
MEMBER GRIFFON: Well, the other

So when you are developing coworker models, you're using HIS-20 data. For years, since there are some new faces around the table, for years workers at the DOE facilities have been concerned that, you know, this database stuff, we don't trust it. We don't believe it.

So I've seen, as part of my mission on the Board from year one, you know, to sort of go back and test that. And ask NIOSH to test that. And SC\&A to review that.

And this means going back to raw data -- you know, as primary data as you can

1 find. A lot of times it is uranalysis
2 logbooks, whatever. And I know that we have
3 a report from NIOSH on that for the HIS-20.

4

6 ever tasked -- and I was talking to John on
7 the way in here but I don't know that we
8 specifically tasked SC\&A with reviewing that. 9 And, you know, I know we discussed it at the 10 last work group meeting.

DR. MAURO: Correct.
MEMBER GRIFFON: I don't think we and

But I don't think we ever tasked them and said look through the details of that and give us a report back as to whether you, you know -- so, Mark, just to understand, I was looking at -- and it's actually -- it's on the 0: Drive, the millspec report is on there.

And actually I think in each tab in the Excel spreadsheet there's a reference ID that gives the document, the logbook, or the urine cards, or whatever they were. I think -- I looked at it quickly just here.

So I think everything should be

1 there that SC\&A would need to look through it, 2 right?

5 log -- I don't think the urine logs were
6 posted but I think you referenced them so they
7 can find them in the --

11 I think -21 referenced because I just looked at them -- or

MR. ROLFES: I'm taking a look.
MEMBER GRIFFON: I don't think the can find them in the

MR. ROLFES: Oh, if it's not there, we can find ours --

MEMBER GRIFFON: Yes. But I mean

MR. ROLFES: -- and get it there.
MEMBER GRIFFON: -- you can find them through the cite research database.

MR. ROLFES: I believe those were, in fact, put out on the 0 : Drive. But it's been more than a year that they've been out there.

MEMBER GRIFFON: At any rate, they are either well -- I know they are well they're on the 0: Drive under the A / B document

1 review section is where I'm talking about, 2 yes.

5 think that we need to task SC\&A with reviewing
6 that report and close that out. You know we
7 haven't -- I thought we did but at any rate,
8 John, you haven't done it yet.
MR. ROLFES: Correct.
MEMBER GRIFFON: So I mean my -- I

DR. MAURO: No, we haven't done it, either way.

MEMBER GRIFFON: So either way, I think we need to task that if people are in agreement with that.

MR. MORRIS: Another detail you may want to know about is the issue that the coworker study that we've just discussed is now in the process of being turned into an OTIB. So the substance will not change. It will just be a format to make it a formal document.

MEMBER GRIFFON: Okay.
MR. MORRIS: And I think you've

1 already invested your review time there. So
2 it may be -- may or may not be worth trying to
3 assign that. But it won't be long before that

7 was this one?

MR. MORRIS: The recycled -- no, excuse me -- the Coworker Study for Uranium Urine, the topic of the morning.

MEMBER GRIFFON: So that would go back to sort of our last action as the coworker review and the coworker model but if it is going to be official now, yes, it's the same thing, the same model.

MEMBER ZIEMER: I'd like to ask for clarity, John, when your group does this, you review the report. But what do you do in terms of validation? Are you going back and subsampling?

DR. MAURO: Yes. What we would do
is we'd go into the hard copy, you know,

1 scanned data that is the source material for
2 HIS-20. And basically what I'm hearing is
3 were the data captured faithfully? And going
4 from whatever the scanned hard copy logbooks,
5 whatever form they were, faithfully
6 transcribed.

MEMBER ZIEMER: Yes, I understand that. I understand that. I'm asking, in a sense, to what extent -- you're obviously not going to do 100 percent sampling. And do you guys develop the protocol or do you have an established protocol for how you do that?

DR. MAURO: The normal procedure would be I talk to Harry and say Harry, here's the arena. And we need to submit a statistical statement regarding the transcription.

MEMBER ZIEMER: Right. I'm trying to get a feel for the extent of the task here. What would be a comparable -- this is a really robust database to start with.

DR. MAURO: Yes.

MEMBER ZIEMER: And I don't have even a gut feel for what makes sense on at what point you say I've sampled enough or does -- Harry, do you have a kind of statistician's guideline that you use a priori? Obviously we don't want this to be an exercise that fills the time available to do the job or whatever it may be.

MR. CHMELYNSKI: The wrong way is to come up with a sample size.

MR. KATZ: Harry, can you just start over again? Thanks.

MR. CHMELYNSKI: I'm sorry. There
are ways to come up with a sample size for validation. I'd have to look more into it.

My guess is we're talking about maybe 100 cases. That's just off the top of my head.

MEMBER GRIFFON: Well, they're
look at -- you're looking at data points in the database, right?

DR. MAURO: Yes, I was thinking in
terms of actual bioassay samples. A case

1 being a person could include hundreds of
2 bioassay samples.

21 and we make a table. Here's what's in the
MR. CHMELYNSKI: Right.
DR. MAURO: I was thinking more along the lines of some kind of cross-section, a nested sampling by time and maybe by -- I guess by building you already have. In other words, we had the HIS-20 data sorted out by year and by building. And by job category.

MR. CHMELYNSKI: Right. For a small time window we have that.

DR. MAURO: Well, up through '61, correct. So we'd have to somehow develop a sampling plan that I guess could make a statistical statement at the end, you know. Let's say you, just for the sake of argument, you randomly select 100 bioassay samples, some kind of stratified sample. And all together there are a 100 samples.

And then we go in and we say okay hard copy. And right next to it, here's the

1 number in milligrams per liter that's in the
2 HIS-20 database.

4 are wrong. Or one of them wrong. Or none of
5 them wrong. You know quite frankly I'm not 6 sure --

9 start with? And number two, what do you do

21 may be that once you get into these, you know
MEMBER ZIEMER: Well, there's two parts of it. One is how much do you sample to with the results?

DR. MAURO: Right.
MEMBER ZIEMER: And I think a priori it would be useful -- and not to sort of say well, we'll kind of figure this out as we go -- and have a firm plan, you know, we're going to sample a 100 samples or a 1,000 or whatever it is.

DR. MAURO: Right.
MEMBER ZIEMER: And we're going to have some criteria, whatever they are. Now it we thought this made sense but as we look at

1 it, it's different.

21 has to come back.
do that again. moving.

And from my point of view, I think
for tasking, we need to know what kind of commitment this is in resources because we've got so many things going on now. And we've got to prioritize some things.

And I would like to see if we
could do it. If Harry can develop -- now, you
9 know, we don't want a big effort on a sampling
plan but what is it you are going to do.
DR. MAURO: Yes, we don't want to

MEMBER ZIEMER: What it is is a
one-pager. You know here's the plan.
DR. MAURO: Harry, we need a one-
pager by tomorrow. Can you do it?
MEMBER GRIFFON: Yes, I mean I
don't disagree. I was trying to keep it

MEMBER ZIEMER: No, no, I know he

MEMBER GRIFFON: I agree.

MEMBER ZIEMER: The reason I'm suggesting that that be done, that we bounce that off -- I would say bounce it off of Mark, as a minimum, and share it with the group.

MEMBER GRIFFON: Yes.
MEMBER ZIEMER: And I would like you to take a look at it. We should all look at it and Ted have the availability of the cost information. And maybe we can have this done within the week.

And then say proceed then, you know.

MEMBER GRIFFON: Right.
DR. MAURO: Yes.
MEMBER ZIEMER: I don't know what we're talking about here.

MEMBER GRIFFON: Yes, I agree.
MEMBER ZIEMER: Is this a 100 dollar exercise or a 100,000 dollar exercise? Or is it somewhere in between?

DR. MAURO: I don't see that --
MEMBER ZIEMER: Or do you have the

1 2

21 toilet seat for the Department of Defense.
22 And so --
MR. ROLFES: I think that's what NIOSH used.

MEMBER ZIEMER: Yes, you did. The problem is with DoD acceptance plans, they are probably the equivalent to the cost of a

1
2 dollars. 6 sort of put some specificity on your

7 suggestion.
8
9 fine.
MEMBER SCHOFIELD: That was 645
(Laughter.)
MEMBER ZIEMER: And that's per sample. But if that's agreeable, it's just to

MEMBER GRIFFON: Oh, yes, that's

MR. MORRIS: It may be that your action will just be to look at what we did and accept it because we used the DoD acceptance sampling plan.

MR. ROLFES: I think we explained how it was done and then presented the data.

DR. MAURO: I think the example is
on the web.
MR. ROLFES: Correct.
MEMBER ZIEMER: And so maybe they don't have to do that. I don't know. See, that's --

MR. MORRIS: We may not need to

1 resample the data and recreate the data
2 collection drill.

6 thing I want to know -21 because I see a lot of them in the '50s and

MEMBER ZIEMER: But they may want to sample your data. I don't know.

MEMBER GRIFFON: Well, the other

MEMBER ZIEMER: I don't know what
it is they are doing.
MEMBER GRIFFON: Just a couple of questions on what you produced. I want to make sure I have the most current version. It looks to me like -- I didn't count all the logbooks but there is a number of them -- 20, 25, more than that probably.

MR. MORRIS: It's been so long I don't know the details to answer that.

MEMBER GRIFFON: Yes. But at any rate, my question was more the -- I think one thing that SC\&A might consider when they look at this closer is what are the years covered into the '60s. I think I saw one in 1970 --

1 I'm just glancing at it quickly. But, you
2 know, I only saw one in the '70s. So, you
3 know, it's just a question of whether we're 4 covering all time frames.

6 believe, you looked at it previously back in
72007 to look a population from each decade.
8 I believe that's what we had, in fact, done.
MR. MORRIS: The recollection, I

MEMBER GRIFFON: Yes. We did talk about that, yes. And there might just not have been as many books available for some years as others or some decades, you know, but -- because, yes, like I said, it seems to me just glancing at this, it looks like a lot in the '50s, but thin in the '70s. And I don't see any in the '80s yet. But anyway.

CHAIR CLAWSON: So --
DR. MAURO: My marching orders
right now it sounds like let's first take a look at what you folks have put up on the 0 :

Drive related to the sampling that you did, which is a millspec sample. And remember it

1 had a lot of nuance to it. In other words,
2 you looked at it in a lot of different cuts.

4 read that and see what you did. And I guess,
5 perhaps, using our judgment just check to see
6 if we come to the same place you did regarding
7 the percent of hits. I remember you reported
8 it as well, we got this many spelling errors.
$9 \quad$ I remember you actually caught spelling
10 errors. And in the end, the hits were mostly editorial more than substantive. I remember the discussion -- I read it last night. We could check that work or we can not even look at it and just do our own. I mean -

MEMBER ZIEMER: No, I think we're asking you to check --

DR. MAURO: To check their work.
MEMBER ZIEMER: -- work and --
DR. MAURO: And that's what we'll do.

1
2 decide that that's sufficient, I think that's 3 the end of it.

7 that you don't have to go back and sample
8 anything --

21 second. I did locate the files that I was
MEMBER ZIEMER: -- and then if you

DR. MAURO: Well, then there's no need for a plan. Then simply --

MEMBER ZIEMER: No, if you decide DR. MAURO: Yes, we'll look at their work, see what they did, and see if it seems to hold up. There will be a judgment made by our statistician if this looks like a reasonable sample, and we checked --

MEMBER ZIEMER: No, I don't think we're asking you to resample.

DR. MAURO: Okay, good, good.
That makes it straightforward. And we can actually start right now because we know what we have to do.

MR. ROLFES: Here -- I'll take a referring to. There is a document out on the

1 Advisory Board Review folder. It's dated
2 March 10th, 2008. And the title is Comparison 3 of the FMPC Hard Copy Bioassay Records to the 4 HIS-20 Database.

6 summary for the record here:
And I'll just read the executive
"Since data extracted from the Canberra HIS-20 database was used in the uranium bioassay coworker study for the feed materials production center at Fernald, the verification for the completeness and accuracy of the data in HIS-20 was desired.

An acceptance sampling plan was developed using statistical method known as sampling by attributes. Hard copy records were acquired independently using data capture trips by members of OCAS and the ORAU team. They consist mainly of analytical data sheets, urine request cards, and an annual urinalysis summary report.
"For this study, 33 electronic files scanned from hard copy bioassay results

1 were examined. There were eight files which
2 were primarily subcontractor or gross alpha
3 beta results. These files were eliminated
4 since they would not effect the coworker study
5 of FMPC employees for the uranium coworker
6 study.

9 meet the criteria but were unlikely to result
10 in any significant changes to the coworker
11 study if the data missing from HIS-20 were to 12 be included. Overall, 90 percent of the data 13 was matched with only a few files accounting 14 for the majority of the results that were not 15 located in HIS-20."

MEMBER ZIEMER: What was the name of that file again? Comparison of --

MR. ROLFES: The title was
Comparison of FMPC Hard Copy Bioassay Records to the HIS-20 Database Dated March 10th, 2008.

MEMBER GRIFFON: Do you have -that was the title. Is that the file name

1 also?

6 okay.

21 only posted the ones that you used for the
22 study on the 0: Drive?

1

MR. ROLFES: No. Well, any data that we collect would be in the site research database.

MEMBER GRIFFON: Right, right.
MR. ROLFES: I don't know if we duplicated it in the 0: Drive as well.

MEMBER GRIFFON: I don't think you did. But that's fine. You've got the references, yes. So there could be more. I'll have to look at the way you sampled but there could be more logbooks.

You didn't sample 100 percent of the logs. I think you went --

MR. ROLFES: No, I think we discussed in that executive summary the quantity of the files that we sampled.

MEMBER GRIFFON: Right, okay.
MR. ROLFES: And from looking at within the Advisory Board's review folder under Fernald, I'm looking at Document No. 4076 FMPC Uranium Urinalysis Program -- no, nope, that wouldn't be it.

I thought maybe we had some of the raw files right there but that's not the correct one. If you want to continue, I thought I'd have the time to open --

MEMBER GRIFFON: Yes, I guess what I'm asking is in that executive summary, Mark, it says for this study 33 electronic files scanned hard copy bioassay results were examined. Are there more files on the 0: Drive in the site research database than 33 ?

There are other files? Okay. So if we wanted to --

MR. ROLFES: Yes, they are available in one place or the other.

MEMBER GRIFFON: Right. And you selected those by your methodology?

MR. ROLFES: Yes, correct. All
the data that we captured has been added to the site research database so it is available either there or on the 0 : Drive.

MEMBER GRIFFON: Okay. So I think that's a pretty clear task, right, John?

1

DR. MAURO: Yes.
MEMBER GRIFFON: We'll start with
that.
DR. MAURO: My guess is Harry will
be getting in touch with you to make sure that we're looking at the right data.

MR. ROLFES: Okay.
DR. MAURO: Harry, are you still on the line?

MR. CHMELYNSKI: Yes, I'm here.
DR. MAURO: Great. I guess we've got an action item that I think we are going to be looking to you for. I don't know if you heard everything --

MR. CHMELYNSKI: Yes.
DR. MAURO: -- or have written it down but certainly feel free to call Mark Rolfes to make sure you are looking at the right material. And then when we get back together, we'll regroup and we'll discuss this.

MR. CHMELYNSKI: Okay.

1

3 I had was the -- going back to this
4 completeness question. And this -- I mean -5 and this also is a question on time, Paul, I 6 mean I think -- but we did this with Rocky

7 Flats.
8
9 are clearly in this site similar to Rocky
10 Flats. You're dealing mostly with individual
11 data. If they have enough data to do their
12 own reconstruction, NIOSH has made that DR. MAURO: Thank you. MEMBER GRIFFON: So the last item號

It was the question of okay, you determination.

The thing that we'd asked at Rocky Flats was look at a sampling of those -- the claim records and make a judgment on whether the records are sufficient to reconstruct -are they complete enough in other words? And I think in the -- what we found in the Rocky Flats review was that there were some inconsistencies. But overall, there were no systemic -- there were no systemic

1 trends or no problem systemically. So, you
2 know, we judged that overall the records of
3 the claimants would have been complete.

4
5 at the comparison of okay, we have a chem
6 operator -- and this goes back to -- I don't
7 know where that 1970 thing came from but if
8 you have a chem operator who only worked in
9 the '50s and '60s and you see, you know, that 10 they should have been on yearly urinalysis but

11 they weren't, they have like, you know, two

So this is getting away from the

1 coworker model and looking at, you know, are
2 the individual claimants' files good enough to
3 do an adequate job.

4

5 petitioners' concerns, too, because they've
6 all -- we've had many questions about whether
7 they felt their records were complete, were 8 they all there, were they -- you know, so this
9 is part of the reason we've been addressing 8 they all there, were they -- you know, so th
9 is part of the reason we've been addressing 10 these at the previous SEC evaluations.

And this goes back to some of the

DR. MAURO: A question for you, Mark. Right now in our data, it consistently shows starting in about 1956 approximately 20 percent of the workers have more than four bioassay samples per year. In other words, so I don't know if that goes toward what you're saying.

In other words, we know that, you know, that means some have less.

MEMBER GRIFFON: Right.
DR. MAURO: Now I guess what would be done? That is let's say we go -- I'm not

1 quite sure what you would do to check what
2 you're saying. The fact that we know, I mean
3 -- we could say that right now. That
4 consistently, you know, 20 to 30 percent of
5 the workers have more than four bioassay
6 samples per year.

MEMBER ZIEMER: But I don't think that answers that per se because what would be an adequate number of bioassay samples is very dependent on where you are working and what you're doing. Or in the case of the accident where it looks like they were sampling every day --

DR. MAURO: Right.
MEMBER GRIFFON: Well and I don't that was an accident.

MEMBER ZIEMER: No, no, whatever
it was.
MEMBER GRIFFON: Yes.
MEMBER ZIEMER: I think you are
looking for patterns where people who should have been sampled were not. And I --

1
2 not there, yes.

7 case, you went through some -- you did some
8 selective sampling of files.

11 data completeness for Rocky Flats.
MEMBER ZIEMER: Yes, you sampled a

21 other -- and we looked at externals, too. We
MEMBER GRIFFON: Or the data is

MEMBER ZIEMER: And I don't think you necessarily find that from these averages.

MEMBER GRIFFON: No.
MEMBER ZIEMER: In Rocky Flats

MEMBER GRIFFON: Arjun was
involved in this so he can describe -- for number of cases and then looked at that. And you're looking for either major gaps -- for example, here I suppose you would select some millmen or whatever it is and ask that question.

But how did you answer it at Rocky
Flats?
MEMBER GRIFFON: And then the looked at whether they, you know --

2 gaps, right.

8 Understood. happened is --

MEMBER ZIEMER: Yes, are there big

DR. MAKHIJANI: Well, at Rocky Flats, at the direction of the working group, we actually took a very small sample because the working group did not want an extensive --

MEMBER ZIEMER: Right.

DR. MAKHIJANI: And then what

MEMBER ZIEMER: It was a sampling.
DR. MAKHIJANI: -- yes, well, we looked at some cases but we did a very crude look. We didn't have job categories, for instance. So this turned out to be an issue eventually in the discussion and there was some criticism that we hadn't done enough sampling but -- so there was a problem and this tension that we -- how much do you do initially in limiting the effort?

And then when you are ready to vote or decide all the issues, put them to

1 bed, there was a controversy over whether we'd
2 done enough. And specifically, I think, it
3 was over the lack of enough examination of job
4 categories or buildings. I don't remember
5 what the issue was.
6
7 more crude look than what we've been
8 discussing this morning.

And, again, it may, you know, unfortunately, you know, we do, we've been running two years on this. You know we have

1 to answer some questions here. So, you know,
2 I don't know that we want to go back in, you
3 know, more than 1,000 claims.

4

5 want to do 300 of them, you know. So, you
6 know, what's the right population?

21 is very reliable in my opinion.
I mean obviously I don't think you

DR. MAKHIJANI: If I might say
something? We've been also doing a sampling
plan at Nevada Test Site. And just personally
from a technical point of view, and Harry has been involved in that, I'm actually quite happy with what we did there.

We had sampled 20 in each of six job categories. And I think --

MEMBER GRIFFON: A similar approach might work, right?

DR. MAKHIJANI: -- we got a pretty good result. It was a fair effort. It was a small fraction of the population of workers. But I think in the end, we got something that

DR. MAURO: In that case, though,

1 we worked with logbooks, handwritten logbooks
2 and --

4 logbooks and records. It was not a non-
5 trivial effort.

6

7 yes.
8
9 I'm a little bit confused because the
10 completeness plan that we presented to you
11 last October was along the lines of, you know,

18 that was the same. I thought that's what we 19 wanted to go back to. Now I don't know why we 20 lost that. Maybe it was because the same was 21 so large that we were concerned about how long 22 it would take.

1
2 small.

4 large. Well, there were three different
5 files.
6 9 database table, this is from our HIS-20 draft 10 analysis, version 2 that I mentioned before.

11 It says the HIS-20_B_bioassaytable contains
12435,982 records of which 431,016 are 13 urinalysis records to below 406,145 are 14 identified as U total with units of micrograms 15 per liter.

19 have transcribed data from PDFs into these 20 Excel spreadsheets for each individual

21 reference ID, which we've mentioned in these
DR. MAURO: It wasn't -- it was

DR. MAKHIJANI: It wasn't very
, Makh ind

MEMBER GRIFFON: I mean --
MR. ROLFES: While we're searching
for that, I can point out that the HIS-20

Also you were asking about the references that we used, there are two tables associated with that summary report, which we two Excel spreadsheets. We've got that data

1 that we used and some notes associated with 2 that.

MR. ROLFES: That's what I said, even if they're not on the document review as a reference, they're there. So we can --

MEMBER GRIFFON: Right. So they'd be easily recovered from the site research database.

MR. ROLFES: Also, it didn't escape before -- I forgot that we also did, in addition to, you know, evaluating the uranium analysis results and comparing those within HIS-20, we did also take some of the other results that were -- essentially any bioassay data that was collected and put into HIS-20. And so there's plutonium, urinalysis results which would also be helpful for us in reconstructing someone's recycled uranium intake or potential recycled uranium intake.

So it's not just a small, simple, only uranium inter-comparison that we did in

1 a data comparison but essentially all the data
2 that were collected and compiled in this
3 database we sampled and determined whether the
4 data was sufficient, whether the data was
5 accurate. And so there is quite a large
6 amount of data that was analyzed and presented 7 in these files.

9 back to the data completeness thing, I don't -- if we dropped it, it wasn't -- I didn't -I don't know if the work group meant to but I didn't mean to.

DR. MAKHIJANI: Yes, the two
options that we -- Harry, are you still on the line?

MR. CHMELYNSKI: Yes.
DR. MAKHIJANI: Do you have the October 6 plan open -- correct me if I'm saying anything wrong -- maybe you should take this over -- in Table 3 of that plan, there are two different sample sizes that were presented: 150 and 300.

1

MR. CHMELYNSKI: Right.
DR. MAKHIJANI: And of course you have different degrees of statistical confidence.

MEMBER GRIFFON: And I think even 300, you're talking about a third of the claims.

DR. MAKHIJANI: Yes. So there is -- 150 is 13 percent or about. Then the table had parsed out how many workers you would get in each plant and how many workers you would get in each of several job categories.

MEMBER GRIFFON: Right.
DR. MAKHIJANI: And I think, you
know, just looking from the Nevada experience where we already completed this thing --

MEMBER GRIFFON: Yes.
DR. MAKHIJANI: -- we did 120
there. The number of job categories fewer in terms of what we were really looking for because we took predefined job categories. There are really far more job categories at

1 Fernald. the same. line?

But if you look at the important job categories in terms of exposure potential, you could limit them and do something like the

Harry, am I off base?
MR. CHMELYNSKI: I think we're in
the same ballpark here. It was a different study that we did then but yes, I think about

DR. MAURO: We did a lot of dose reconstruction audits for Fernald. I don't know how many we have. Maybe Kathy would look -- I don't know, Kathy, are you still on the

MEMBER ZIEMER: You would know something about completeness from them.

DR. MAURO: Yes. I mean I don't know how many we did but that's what we do in a dose reconstruction.

MEMBER ZIEMER: Yes, right.
DR. MAURO: You know we may

1 already have at least something intelligent to
2 say about this based on the results of -- I
3 know we must have done I don't know five, six,
4 ten, maybe more.

21 cases?

DR. BEHLING: John?
DR. MAURO: Yes, Hans?
DR. BEHLING: This is Hans. Kathy
is not in the office but I can get here and get back to you after lunch perhaps.

DR. MAURO: That would be great.
It turns out, you know, we have a significant number of Fernald cases that we reviewed. Obviously we'd be able to say something about completeness of the data and the ability to reconstruct those, external and internal, and what the records look like for those workers.

DR. BEHLING: Specifically, what is the question so I can direct her focus on getting you the answer?

MEMBER GRIFFON: How many Fernald

DR. MAURO: How many Fernald cases

1 did we review?

21 workers with a monitoring badge.
22
DR. BEHLING: Okay.
reviewed about 240 cases. You know how many
of those were Fernald cases?
MEMBER GRIFFON: But I can't
imagine it is more than 20. And you're
talking 150 here, you know, so -advantage of this.

I agree.

DR. MAURO: Thank you.
MEMBER GRIFFON: It still seems
high to me. getting back into that original issue was do we have data for the right classes of workers? And it seems to me that is very well established that we have 90 percent of the

I don't know looking at the

DR. MAURO: Yes, to date I know we

DR. MAURO: But it's nice to take

MEMBER GRIFFON: Right, right, no,

DR. NETON: It seems like you're

1 database itself if it's going to be any more 2 instructive. I mean --

MEMBER GRIFFON: No -- well, you
4 mean the individual claims files?

6 files is where you really probably need to
7 look.

9 talking here.
MEMBER GRIFFON: That's what we're

DR. NETON: That's what I'm
talking about. Originally the sampling plan was not claims files, was it? Or just to go back and look at how many workers -- or how many millrights were, you know, sampled.

DR. MAKHIJANI: The original plan was to look -- go to the claims files to look at --

MEMBER GRIFFON: That's what I thought. Like we did with Rocky Flats, yes. And then we saw -- I think -personally I thought 150, I was trying to think of a way that -- yes, can we reduce that

1 and still keep the statistical significance.

3 you're right. And we got criticized in Rocky
4 for going too small. But we had to weigh this
5 thing of, you know, how long, how much money
6 are we going to spend on this task?
I mean we did have a problem,

DR. MAKHIJANI: And if I recall, we did 40 or 50 workers at Rocky Flats.

MEMBER GRIFFON: I think so, yes, somewhere in that range, yes.

MEMBER ZIEMER: Well, if there was a systematic problem, you would expect it to be showing up in the claims that you monitored to start with.

DR. MAURO: Yes, that should be revealed.

MEMBER ZIEMER: So it would certainly be a starting point.

DR. MAURO: By the way, the original budget claim that was covered last time was 200 workers. So it was not a large effort to do the thing that we describe here.

1 It might have been 200 work hours.

6 file -know --

DR. MAKHIJANI: And that might have been a HIS-20 examination -DR. MAURO: It was. DR. MAKHIJANI: -- and not a paper DR. MAURO: Not a paper file. MEMBER GRIFFON: That was my recollection. I was thinking about it as a paper record.

DR. MAKHIJANI: So maybe that's where the problem arose.

MEMBER GRIFFON: Because HIS-20, I think you're right, we already had that. So I think we have to think of a way to reduce that number of -- if we can -- I mean if, you

DR. MAKHIJANI: I think you talked about this with me, Paul, in terms of what it took for NTS. Ultimately when the thing got going, it was several hours, four, six hours.

DR. MAKHIJANI: So it's not

1 insignificant but it is not as huge as you 2 would think. I mean the SC\&A young people

3 that did this doc are pretty good at it.

4
5 to 900 work hours.

6

7 trivial. Yes, it's not trivial.

21 ever evaluated -- I don't think NIOSH ever
DR. MAKHIJANI: Yes, it's not

MEMBER ZIEMER: Mark, you
described what, in a sense, was NIOSH's
evaluation of the completeness of data.
MR. ROLFES: Correct.
MEMBER ZIEMER: Is that -- what you described, did you ever formalize that in any kind of a summary report?

I mean is there an equivalent report to your other -- what was the other one -- the report on the validity -- the validity report. Was there a completeness report similar to that?

MEMBER GRIFFON: I don't think we evaluated -- this, the way I'm talking about

1 completeness here.

6 accurately entered. reconstruction.

MR. ROLFES: Correct. What we've done or what we were tasked by the Advisory Board to do or the working group to do was to ensure that the data entered into HIS-20 was

MEMBER ZIEMER: Yes, that's it.
MR. ROLFES: I don't believe we've gone and sampled a population of workers to independently also verify that, you know --

MEMBER ZIEMER: No, but in a sense, in doing dose reconstructions -- and you've done a lot of those at Fernald, you have some sense of completeness of data.

MR. ROLFES: With every dose reconstruction that is completed, we do, in fact, determine whether the data are sufficient on a case-by-case basis for a dose

MEMBER ZIEMER: Right. And does
that -- so does this show up anywhere?
MEMBER GRIFFON: You don't look at

1 it systemically though. You look at it on a
2 case-by-case --

MR. ROLFES: Right. It's not done across the Board.

MEMBER GRIFFON: Yes.
MEMBER ZIEMER: Well, what --
okay, I'm trying to think about -- if you systematically were finding the data to be incomplete, would that show up somewhere in your system as a report where you would alert dose reconstructors?

DR. NETON: It would be on our Gantt chart tracking system saying we have a -- we don't have a method to move forward with these cases.

We track these all the time. Why we aren't get them out the door, there's always a technical reason identifying it. Well, we don't have sufficient bioassay data to move this forward.

MEMBER ZIEMER: Right.
MEMBER GRIFFON: Yes but that's a

1 little different question than I'm asking. I 2 mean --

4 the same question but it's sort of -- it's
5 less formalized.
MEMBER ZIEMER: Well, it's part of

MEMBER GRIFFON: Yes.
MEMBER ZIEMER: In other words --
DR. NETON: Yes, we don't --
MEMBER ZIEMER: -- if there was a data incompleteness issue, it would show up in terms of how you were handling cases. And we're looking for some way to sort of certify that, in fact, the data are complete.

I was trying to see if there was a way we could say yes --

DR. NETON: I've always maintained and I'll say it again, I think the proof is in how we've done the dose reconstruction.

MEMBER ZIEMER: Right.
DR. NETON: We've done 900 and something dose reconstructions.

MEMBER ZIEMER: Right.

1
2
3 the ones that you've sampled that -- and are
4 those enough cases for us to satisfactorily
5 answer the question? I guess we need to know
6 how many cases there are.

9 do dose reconstruction reviews, we're also 10 looking at did they -- I mean basically it's

11 a detailed review of did they follow the
MEMBER GRIFFON: Right.
MEMBER ZIEMER: And that's why in

MEMBER GRIFFON: Yes. But I don't even think -- you know when we do -- when we procedures?

So if the procedure says, you
know, you have this many -- I mean I don't think anybody -- and I'm pretty sure we never looked and said okay, this worker in Fernald should have been on a quarterly but we only have an annual -- you know, it looks like they have annual data. I don't know if that would have come up in SC\&A's review of cases.

DR. NETON: Yes, I'm not sure if quarterly or annual sampling makes any

1 difference in the way we do --

3 modeling. I agree. But it raises -- if you
4 see a systemic problem across the Board, you
5 wonder what happened to the data? How did --
6 where did this go?

8 measured every -- you know what I mean? It
9 may not -- like Mark's example, if you have
10 one sample in 1989 but this was a chemical
11 operator from 1950, he's probably right.

21 didn't follow their own procedures or the data
22 are lost. Or does it really make a

1 difference?

6 you're dealing with though. You know like if
7 -- for the quality of the program.

8

21 of 20-something job categories.
DR. MAURO: Well, what we did have in our audits --

MEMBER GRIFFON: Well, it gives
you a sense of the quality of the data that

I mean for me if they have protocols to sample certain work categories by month and certain ones by quarters and certain ones annually and if everything was annual in the thing, it raises some questions to me on what happened between, you know, protocol and the data we've got in HIS-20 or whatever or in the hard copy records.

DR. NETON: I don't they've got to that level of granularity. I think something along the lines of what John was talking about earlier where you can take these people with the higher exposure values, this list they had

And say well, were those people

1 indeed sampled more frequently than the people
2 in the lower categories? I mean that would --
3 and you have data to support that, yes or no.
And sort of draw a very bright
5 line and say well, if you've got to have
6 quarterly data for chemical operators and what
7 not --

8

9

11 understand.

21 mismatch. You know we don't want to answer
MEMBER GRIFFON: I am not saying -

- I'm using these things as descriptors.

DR. NETON: Yes, yes, I

MEMBER GRIFFON: I mean, you know, in Rocky Flats, we found several examples where it didn't match. But at the end of the day, we said there was no systemic, you know, sort of intentional thing going on.

It was just once in a while it didn't match. But no big deal. That's sort of the -- that's the outcome we're looking not to say, you know, not to try to answer every every mismatch. We want to look for trends,

1 I guess, is what I'm saying.

3 Mark, of the 950 dose reconstructions that
4 have been completed, typically when I've
5 looked at dose reconstructions, there has been
6 deficiency one way or another. And so most of
7 them would actually not have used the detailed 8 data.

11 many -- we couldn't have had an assessment of

21 -- were there bioassay data for this worker
DR. NETON: More than likely. DR. MAKHIJANI: I don't know how -- in going through your dose reconstruction of --

DR. MAURO: No, but you do know --
I think the deficiency process has been
steered away from.
MEMBER GRIFFON: I don't mind
looking at those.
DR. MAURO: But in every dose reconstruction we do, the first thing we do is and were there fil badge data for this worker?

2 record file. So we would know for every case 3 we reviewed. Now whether or not --

5 we've had findings recently where we said, you
6 know, the individual had bioassay data and
7 should not have used this model. And NIOSH is
8 saying, yes, we're changing it over. We
9 should have used this.
DR. MAURO: Right. But remember the question that is being posed though is that let's say we have 15 cases that we reviewed. They may have applied OTIB-4 or some other deficiency method to quickly clear this case.

Nevertheless, when we review it, his file, that worker's file, if he had bioassay data and he had film badge data, it would be in his file and we'd have a table of every single measurement and what the measurement was and when it was taken.

And we would be able to say okay,

1 out of the 20 or whatever cases that we
2 reviewed, here's the worker and here's his
3 record. He worked here these years and here's
4 the bioassay samples that were collected.

6 know his job category.
DR. MAURO: And we'd know -- well, to the extent that it was in his record.

MEMBER ZIEMER: Because you always show that in your reports.

DR. MAURO: Oh, we do when we have that recorded, yes, we do.

DR. NETON: Maybe we are doing
several different things here. I mean wouldn't what Mark talked about earlier that we've already done speak to some of this? Which is if you went to the hard copy records and made sure the HIS-20 database has all the hard copy records or a nice sampling. And we'd have the original data in there.

DR. MAURO: Well, I think I'm hearing something different.

1
2 that they took on the workers.

5 question is were the workers adequately
6 monitored is a different issue. So I think
7 the proof is in looking at each individual
8 case. If we've demonstrated we have the
9 records of the sample they took, we have what 10 we have. We don't appear to be missing large

11 chunks at least compared to the hard copy
12 records.

14 and say they never got the hard copy records. 15 But I don't know how far you want to regress 16 back. So we have the data of the individual.

17 Now it's a judgment call. Do we have
18 sufficient data now that they took on this 19 person to reconstruct this dose? So I think 20 that's been done.

DR. NETON: We have the samples DR. MAURO: Right.

DR. NETON: Now the second

Now you can go back another step

MEMBER GRIFFON: I think -- I don't like the -- I mean I think the sample is

1 too big but I think actually there is some
2 usefulness in looking and saying -- I mean
3 let's think -- let's drop the bioassay
4 argument and go to the external dose size
5 because now you can't hang you hat on a sample 6 in 1990 anymore, right?

9 the person is supposed to be on, you know, 10 monthly TLDs. You have no data for, you know,

11 eight years or something. Then what do you 12 do?

21 different methods that we could use to assess
Now in the dose reconstruction, I know just -- I'm not sure what they -- well, I'm not sure for Fernald what they would have done.

MR. ROLFES: I think we explained this pretty detailed in our site profile because it came up as -- when women were not monitored routinely. And we presented three their unmonitored dose. And I think we've,

1 you know, completed that.

9 Fernald from very early on.
MEMBER GRIFFON: So we can't imagine them not --

DR. NETON: It would be hard. I mean we've been down this path before and where it split and things but you raise a good point. I mean -- well, I'm not --

MEMBER GRIFFON: The only thing that remains for me is that I don't want to get into the -- I think 150 -- just sitting here, it seems large. And I'm sure there's good statistics to back up why you chose that number but I'm trying to think of something less, you know, burdensome.

1
2 really good number. Once you get to 30, it's
3 part of diminishing return.
4
5 we don't have to -- you know maybe the job and 6 -- I mean I'd have to look back at the plan

7 you submitted before but maybe we don't have
8 to -- maybe there is a way to cull down that
9 number and get what we need to answer, you
10 know, because, you know, I don't know.
DR. NETON: Thirty seems to be a

MEMBER GRIFFON: Yes. And maybe .

I mean we've got a number of
factors here. And if all of them are looking good, I don't think we need to look at 150 cases for this aspect of it is what I'm kind of getting at, you know. So --

DR. MAKHIJANI: I would agree. I
think in view of the very large number of bioassay samples that there are and the fact that more than 90 percent of the workers have some sample, I think going through the same exercise that we went at Nevada test site where only 35 -- in the Nevada test site, it

1 was a much, much bigger issue at least in my
2 opinion because there you only got 35 percent
3 of the workers were monitored internally, if
4 I'm remembering the number right. It's on
5 that order.

7 different situation. So the chance of your
8 coming across a worker who was never measured
9 at NTS is pretty high compared to Fernald where it is pretty low. So --

MEMBER GRIFFON: There were -- I'm
trying to remember back to the Rocky Flats although sometimes I try to forget it. I have reasons why that's the case. But you're not a production facility at Nevada.

DR. MAURO: Well, I'm not saying we're good or bad. I'm just saying in terms of you're likely to find in a sample size -anyway, it doesn't matter --

MEMBER GRIFFON: But I mean one thing -- the one thing that sort of came out and this is part of the reason for going

1 forward is it may -- and I would like to get
2 that number down but I believe, and maybe I'm
3 wrong, Jim, but some of that '69, '70 stuff at
4 Rocky Flats showed up when we did this, you
5 know, completeness reviews that we did.

7 yes, look at this in '69. And then there was
8 the question of the fire and what happens --

11 analysis because then there was always -- they

21 hanging out there, the concern from the public were on strike in that year and they moved production from Plant 2 to --

MEMBER GRIFFON: But at the end of the day, we got there. And we said okay, there's good reasons for this, you know, but that what the people are asking, too. You know petitioners are asking, you know.
And we -- yes, it is time
consuming but we don't want to leave that is these records are, you know, are not good.

You know we sort of found, oh,

DR. NETON: Right. And that was
my original objection to doing sort of

1 We have concerns about them. And this is --
2 you know, we've got to do this with rigor to
3 make sure. And if we put it to bed, we put it
4 bed, that's great.

6 there. I'm just uncomfortable with the 150.
But I think we've have to go

MEMBER ZIEMER: Well, let's say
you did a sampling, say it's ten, or it's 30, or 150 -- hopefully it's not --

MEMBER GRIFFON: Hopefully it's more like 30 or 50 but yes.

MEMBER ZIEMER: -- but, okay, you go in and you pull a case. What are you going to look at? The years worked? The number of bioassay samples? Number of film badge samples? And the job category and the plant.

MEMBER GRIFFON: Right.
MEMBER ZIEMER: And you could table these.

DR. MAURO: And that's done, to some extent, right now. It's already done.

MEMBER ZIEMER: For one part.

1

2
3 you've already done, yes. But it doesn't look
4 to me -- that's just bean counting it looks to 5 me like.

6

7

8

9 You're not having to calculate anything. Just
DR. MAURO: No, for the dose --
MEMBER ZIEMER: For the ones都

MEMBER GRIFFON: Yes.
MEMBER ZIEMER: So it doesn't look to me like it is a big time commitment. -- you're just looking for some patterns here. There's nothing about the tabling.

DR. MAURO: What we're really talking about is let's make believe for a minute that what you were asking is we want to do an audit of Fernald dose reconstructions, you know, we'd like to go in -- what happens when we do that? You folks provide us with some electronic files, which is the record for this worker, which includes everything DOE provided you regarding this person.

In a very short period of time, we quickly go into their bioassay and we make a

1 table. And we say here we are. We count
2 them. And we say here they are and we put the 3 numbers in.

And that's the story. That's done
5 on day one. Okay, this is what we have. Then
6 we start the processes. How do they use that
7 data? Did they follow their procedure?

8

9 question. You're just sitting there saying
10 let's -- what do we have on this person.

19 cases and just say here, as if you were going 20 to do a dose reconstruction audit, but we're

21 not. We're just simply going to do this. I
22
MEMBER GRIFFON: Right. What's their -- and is it appropriate for their job and their building and their whatever?

DR. MAURO: Yes, so I mean if you folks -- the way you always provide us with a CD, with, you know, the 23 cases that we are going to have to audit, I mean if you would provide us with a random sample of 30 Fernald think this --

5 one thing. I mean I don't think that -- as
6 long as we're not doing an analysis, did you
7 follow you procedures, and then to match your 8 numbers because, you know --

21 is Harry Chmelynski.
MEMBER GRIFFON: Well, I'd like to make sure -- think about the 30 because that's a big difference than your 150.

DR. MAURO: I'm saying we could do

MEMBER GRIFFON: Think about the data and not the dose, not the dose.

DR. MAURO: I don't think this is a -- each case would go very quickly.

MEMBER GRIFFON: Yes, I think it's pretty helpful.

DR. MAURO: A few hours a case.
MR. CHMELYNSKI: John, I'm going to interject here. The previous studies --

MR. KATZ: Can you identify
yourself please?
MR. CHMELYNSKI: I'm sorry. This

MR. KATZ: Thanks, Harry.

MR. CHMELYNSKI: In the previous
study, we were looking at a completely
different question which was how many records would we have to look at in order to determine whether sampling -- to determine accurately whether sampling was done quarterly or monthly or annually over a broad number of cases.

Here we're looking at individual cases. So I don't think the 150 has anything to do with what we're doing here.

MEMBER GRIFFON: Okay. Good. Good.

MR. KATZ: Thanks, Harry.
MR. CHMELYNSKI: Okay.
MS. BEHLING: Excuse me, John, this is Kathy Behling.

DR. MAURO: Yes?
MS. BEHLING: I guess -- I don't
know whether it's still relevant to your conversation but I guess you were interested in knowing how many cases we reviewed from Fernald as the first 258 cases. I quickly

1 looked that number up. We've looked at 15
2 Fernald cases.

MEMBER ZIEMER: There you go.
MS. BEHLING: Now of those 15, six were maximizing cases. They were early on or were minimized. And only five are best estimates or what they term full internal and external.

And I haven't had a chance to really go into those records or look in-depth at what we did there. But I can certainly do that if it would help.

MEMBER GRIFFON: I don't think we need it right away but yes, you might have those cases to work on. You might have those cases to work on, yes, yes.

DR. BEHLING: This is Hans Behling, also from SC\&A.

Regarding the issue of the adequacy, I guess I do want to caution in context with what Kathy was saying is that for many of the bioassay data for Fernald, we have

1 data. But the question that we raised during
2 the review of the TBDs is how much of that
3 really requires default values. And, of

5 default values are usually claimant-favorable
6 such as the uncertainty regarding -- since
7 most of the urine data was dosimetry data,
8 that doesn't really tell you exactly the
9 composition in terms of enrichment. It

11 uranium. And it doesn't tell you the

MEMBER GRIFFON: Right. Yes,

1 that's a different issue.

2

3 interject -- my belly is talking to me --
4 John, what I suggest is over lunch that you
5 kind of think about this because I don't want
6 to kind of have a knee-jerk reaction. I want
7 to make sure that we are getting exactly what
8 -- so we're all on the same board because
9 we've been kind of going around here.

11 little bit. And when we come back after 21 that could be done expeditiously and maybe

CHAIR CLAWSON: If I could Just kind of think about it a lunch, we'll discuss this a little bit more in detail to make sure that everybody is on Board with where we're at and what's asked of SC\&A, you know, if we could.

DR. MAURO: Kathy and Hans, I'm
going to give you a call during the break. I'd like to talk to you a little bit about what we can do with the data. If it is in cases you have right now and it's something inform this process.

21 Working Group, and we have just returned
MEMBER GRIFFON: And maybe talk
over break about the total number, too, that you think would be sufficient.

DR. BEHLING: John, so give us a
call whenever.
DR. MAURO: Very good. Thank you.
CHAIR CLAWSON: We're done for
lunch.
MR. KATZ: Okay. We're breaking
for lunch. It's almost quarter to one. So
let's see, what time would you like to --
quarter to two, we will reconvene.
Thank you everybody on the phones.
(Whereupon, the above-entitled
matter went off the record at
12:43 p.m. and resumed at 1:50
p.m.)

MR. KATZ: Good afternoon. This
is Ted Katz with the Advisory Board of
Radiation Worker Health. It's the Fernald having broken for lunch, and that's all I have

1 to say, but Brad you can --

3 for lunch, we were debating and questioning
4 back and forth with SC\&A on this sampling plan
5 that we were going to do, and I've asked John
6 to more clearly define what he'd like to do,
7 so I'll turn that over to John and we'll go
8 from there.

21 There's the person, Person Number One, Person
22 Number Two, all the way through the 14th

1 person. The next column would be his job
2 title. What did he do, if you can get that.
3 And usually you can.

4
5 number your worked, 52 to 72.

21 you had or not? And this is my question.
The next column would be the

The next one is what's the total
number of bioassay samples that were collected from that worker over that time period.

These are the changeouts that were collected from that worker over that time period.

Now that would be a very close snapshot picture of completeness. You know, if you see some zeroes or you -- you know what to expect. You've got a person that has a fairly comprehensive experimental program you know it's going to be monthly.

Same thing as bioassay, quarterly, you know. You want certain numbers to be in there, and it's fairly complete. Is this what

MEMBER GRIFFON: No.

1

8 let you -- I think you should use those as you
DR. MAURO: No.
MEMBER GRIFFON: I mean it is
good -- it's good slushing criteria, you know, but it's not what the final product --

DR. MAURO: No, no, no. I'm saying with regard to the 14 cases.

MEMBER GRIFFON: I mean, it would can going forward, but, I mean, the final part

I think should look like you did for Rocky, for each case.

You know, in other words that Person Number One --

DR. MAURO: Yes.
MEMBER GRIFFON: -- they might have worked 20 years. They might have four different job titles.

DR. MAURO: Okay.
MEMBER GRIFFON: So you have to look annually.

DR. MAURO: Okay, so you want --
MEMBER GRIFFON: You want to have

1 details.

7 yes.
8
in. 54.

DR. MAURO: That's why I put this

MEMBER GRIFFON: Yes, yes.
DR. MAURO: Right now --
MEMBER GRIFFON: Okay, overall,

DR. MAURO: So in theory what
you're really saying is we could blow this out, so for that person we could have a whole page per person.

MEMBER GRIFFON: Yes.
DR. MAURO: We get into each year where we get into each year. In other words, for that person what's the date of 1952, 53,

MEMBER GRIFFON: Because
otherwise you're not going to see trends or gaps. I mean, if you just see total number of bioassays in 30 years --

DR. MAURO: Right.
MEMBER GRIFFON: -- you know it

1 looks like 30 samples or 60 samples or
2 whatever, but it looks robust, but it could be
3 that from '70 to '75 every person there is
4 missing data, you know.

18 have to have them put in expected frequency.
19 I mean, we can make that judgment, but if

21 person is a nomad for the first 10 years and
DR. MAURO: Okay, so --
MR. MAKHIJANI: And Mark just to clarify a little bit of informal conversation we were having on this point about what you want so it's clear --

MEMBER GRIFFON: Yes.
MR. MAKHIJANI: -- to everyone. Is your want not going to be an annual thing, but you want something about the job category and the expected monitoring? Is that what you want?

MEMBER GRIFFON: Yes.
MEMBER ZIEMER: I don't think we you're going to have -- for example, if the there'll be some frequency. And you can do it

1 by year.

6 if something is missing. And if they change
7 jobs and suddenly they're the -- you know, 8 they're working in the front office --

I agree, it should probably be by
year --
MEMBER GRIFFON: Yes.
MEMBER ZIEMER: -- so you can see

MEMBER GRIFFON: And if done annual, then yes.

MEMBER ZIEMER: Yes, but -- yes, so I think there's just more detail you're talking about. But I don't think that adds much more work.

MEMBER GRIFFON: I don't think so. It would be copying it and pasting it.

MEMBER ZIEMER: You want to just break the years out a little more.

DR. MAURO: So -- a separate page for each year.

MEMBER GRIFFON: And for those 14 cases that you've done already. I mean, if

1 you don't have it in the spreadsheet, NIOSH
2 does. I mean, I know because reviewing these 3 cases --

4

5 is putting that back table together. We will
6 --

9 table you just described, which should look a 10 lot like -- except that would be by year. In

11 other words -- 21 sense to me just to give you a total. And

MEMBER GRIFFON: Or by reading. Really, by reading because it could be a sub year, but anyway -- yes.

DR. MAURO: Well, a person --
MS. BEHLING: Excuse me, John.
This is Kathy. I'm listening in here and over
the lunch hour I started putting this table together, and I'm putting it together just as Mark explained, because it didn't seem to make I've already for two of the individuals, and

DR. MAURO: Well, right now Kathy

MEMBER GRIFFON: Right.
DR. MAURO: We will make the

1 it's 15 total, for two of the individuals I
2 have already broke it down, broken it down by
3 year and if it's a partial year I say the year
4 behind it. I put in whether it's weekly or
5 bi-weekly for the film badges, and then I've
6 also broken down for the urinanalysis by year.
7 So I'm already doing that.

8

9

MEMBER ZIEMER: I think we can make a judgment. If we come back and say we can't reach any conclusions through this, we can always instruct --

MEMBER GRIFFON: I think 30 and
if they're fairly random -- I mean, do you
think we should bias them in any way?
MEMBER ZIEMER: These working
cases typically are random.
MEMBER GRIFFON: Based on what we

1 have here.

3 the others ought to be randomized in some
4 fashion.

6 was thinking was we might want to make sure 7 they're in the SEC period, you know. We have 8 a lot of years in '89 through 2006. That

9 might not be so useful.
MEMBER ZIEMER: And I would say

MEMBER GRIFFON: The only thing I

And then also maybe if we want to bias it at all, make sure we cover those early years more than the later years. I don't know if that -- that's sort of a judgment call, but it seems to me there's no question about the monitoring '52 through '54.

MEMBER PRESLEY: Stay away from '52 to '54. I mean, that was a production year up there. It's when they were building buildings and facilities and stuff like that. MEMBER GRIFFON: Well, it's a construction year, yes.

MEMBER PRESLEY: And a lot of the

1 stuff was not on site until after 1954.

4 been monitored during that time period is what
5 Bob's saying, I guess.
MEMBER GRIFFON: So that may be difficult to evaluate whether they should have B's sayingr I guess.

MR. MAKHIJANI: Well, we have to look at the site profile and the site history, and I think '52 was certainly a construction year.

MEMBER GRIFFON: Yes.
MR. MAKHIJANI: I'm not so sure about '54.

MR. MORRIS: There was still
construction going on in '54.
MEMBER GRIFFON: Yes, it was
still going on.
MEMBER PRESLEY: One of the things by breaking that out by year like that, it's going to be interesting to see is -- say you had somebody that was a 10-year worker and then in 10 years maybe he was promoted to a foreman, when he's a foreman in the same area.

1

2 a worker and his dose reconstruction -- or
3 not dose reconstruction -- but his dose would
4 be as a foreman in the area. See if things
5 drop there.

6

7 looking at on that table in there. You all
8 had things about workers and you also had
9 things about foremen, and the foremen doses
10 were super, super low. A lot of the times the
11 foremen are right out on the floor with the 12 workers, so that's something that we -- it's

19 that's -- I think that's the construct. Is
So what his dose reconstruction as
a going to be interesting to look at.

And your foremen didn't sit in an office for eight hours a day. Generally, he was right out in the middle of the operation going on.

MEMBER GRIFFON: Right. So that clear?

CHAIRMAN CLAWSON: I heard Kathy say 15.

1

2 to do 15 more?

4 becomes with 15 more is what's the most
5 efficient way to do that to get the next set
6 of 15. Right now, you know, NIOSH provides us
7 with the CDs for those 15 . Would it be the
8 most efficient way for NIOSH to provide us
9 with another set of 15 according to certain
10 criteria, or should we somehow just search the
11 database.

12
13
14

MEMBER GRIFFON: Maybe you ought

DR. MAURO: Now the question ost efficient way for NIOSH to provide us cher

I'm not sure how best to do this.
MEMBER GRIFFON: They've got to be finally adjudicated claims, right? We usually don't review other --

MEMBER PRESLEY: I say take zero -- you know, 10, 20, 30, 40, 50 until you get that, and if they're not in the time frame, then skip it and go on to the next zero, the next 10.

MEMBER ZIEMER: You mean in the order that they came in?

1

3 -- I don't know. My feeling is that's the
4 SC\&A can sample.

6 this a number of times, and the only thing I
7 would suggest is that we do, as you were 8 saying, have a somewhat of a bias for people
9 who started in the '52 to '56 period, no 8 saying, have a somewhat of a bias for peop
9 who started in the '52 to '56 period, no

10 matter how long they went.

21 you're going to keep it at 30 cases overall,
MEMBER PRESLEY: Yes.
MEMBER GRIFFON: I mean, I think

MR. MAKHIJANI: Or Harry's done

And that we also have something of a check to see that we had a half a dozen or 10 workers who went through the eighties, up to '89 --

MEMBER GRIFFON: Right.
MR. MAKHIJANI: -- so we're not
missing the tail end of the period, and we make sure that we have that, but then that we leave the rest to Harry. Let him --

MEMBER GRIFFON: Yes, we know so I don't think it's an issue. As long as

1 you describe exactly how you sample them, I
2 think that's fine.

5 right off an octave.

7 that will work if that's okay with everyone.

9 still on the line. Harry, are you on the

20 rather him do it that way. Randomize it, 21 maybe you'll pick up 20 random numbers or 22

MR. CHMELYNSKI: Yes, I'm still here.

MR. MAKHIJANI: Does that sound reasonable?

MR. CHMELYNSKI: Yes, that won't be any problem to pick a small random sample.

We may do some sort of rejection sampling though in order to make sure it meets the --

MEMBER ZIEMER: Yes, I would something.

MEMBER GRIFFON: Right.
MEMBER ZIEMER: Your first 15
randoms, though, if you're missing a couple of criteria --

MEMBER GRIFFON: Exactly. All right, that's it on that topic, I think.

CHAIRMAN CLAWSON: No more discussion on --

MR. MAKHIJANI: Do we draw the data from the HIS-20 database, or do we have to go to the paper file?

MEMBER GRIFFON: I would suggest going to the paper file. Isn't that the bottom line for the dose reconstructors to use the hard copy record, right? I would go with the hard copy record.

CHAIRMAN CLAWSON: Ted, I guess out of clarification do I need to go through these as passed this, as done with this? That sounds good. So, John, I guess the next step we're going to go onto is RU.

DR. MAURO: Everyone should have

1 received the -- a report dated March 2009
2 titled SC\&A's review of issues related to the 3 reconstruction of doses for workers exposed to

4 recycled uranium at Fernald, commentary on
5 NIOSH white paper.

9 Right now the co-worker model approach being 10 used for dose reconstruction includes the 11 assumption that for every milligram of uranium 12 that's in urine, along with that uranium comes

21 misrepresenting anything.
My understanding is just like the

1 two percent enrichment assumption which is 2 conservative as applied to the site, you're 3 going to assume that all uranium process is 4 recycled uranium with the mix identified on 5 page 11 of the report that I circulated to 6 everyone. So my starting point is page 11.

MEMBER ZIEMER: John, why don't we have a specific day on these last couple of reports?

DR. MAURO: That's on the bottom in the footer. It says March 23rd, and the cover says March.

MEMBER ZIEMER: Okay, I've got

DR. MAURO: I believe page 11 --
MR. STIVER: John, could you

1 possibly resend them. Do you have it in email
2 form that you can send it to me?

5 to page 11 --

7 the distribution list, please.

21 if it's 3-3 -- well, in the other table I
MR. MAKHIJANI: I can send it.
MEMBER ZIEMER: And before you go

MEMBER PRESLEY: Arjun, put me on

MEMBER ZIEMER: I just have a question, on page 10 you talk about Table 4-3.

DR. MAURO: Yes.
MEMBER ZIEMER: Now I had trouble finding --

DR. MAURO: Okay, I can see where you are referring to.

MEMBER ZIEMER: It's the last
paragraph 10. It says in Table 4-3 reproduced above.

DR. MAURO: There's obviously some
mislabeling here.
MEMBER ZIEMER: Is that 3-3? But couldn't read what -- on my copy I couldn't

1 read the items, so I --

DR. MAURO: How is the scanned information?

MEMBER ZIEMER: On 3-7 --
DR. MAURO: Yes.
MEMBER ZIEMER: -- it didn't show
up, so I'm not sure what those columns were, so I couldn't --

DR. MAURO: Yes, you're right.
I'm aware of that. I'm going to have to clarify that for you.

MEMBER ZIEMER: Okay.
MR. MAKHIJANI: I am just trying
to send off the email.
MR. MORRIS: What you can read on
your screen is not readable on the printer.
MEMBER ZIEMER: Well, that part,
but when it refers to Table 4-3 it says that
it contains data for zirconium niobium-95 for the first five months of '67.

Now if you look at Table 3-3, I thought at first that was the -- just

1 mislabeled. I don't see anything about
2 zirconium niobium there.
$4 \quad 10$ in the text above. It's a pasted in table
5 from that source, NIOSH 2008. And zirconium
6 niobium, it's on page 11, and the zirconium
7 niobium line is the second last line.
8 MEMBER ZIEMER: Okay, I was going
9 back and looking above.

15 uranium --
MR. MAKHIJANI: It's called Table

MR. MAKHIJANI: Yes -- no, just below that sentence. In my computer at least it's on the next page.

MEMBER ZIEMER: I got you.
MR. MAKHIJANI: For set total

MEMBER ZIEMER: All right, yes, yes, okay.

MR. RICH: John, this is Bryce
Rich.
DR. MAURO: Yes.
MR. RICH: Quick question.
You're going to be presenting the SC\&A's

1 review of the white paper?

4 response to your findings which is still in
5 review. Do you want comments during the time
6 that you're presenting these points or --

9 wait until --

21 that there's a formal response -- is hanging
DR. MAURO: Yes.
MR. RICH: We've developed a

DR. MAURO: Sure.
MR. RICH: -- or do you want to

> DR. MAURO: No. I mean, let's talk about it.

MR. RICH: I just wanted the board to know that they will be getting a formal response, and a lot of these points that are being made I think which you plan to discuss today, I think there's a logical response that should be discussed and would probably be better once the formal report is issued to the board.

I just wanted the board to know in the balance here.

1
2 perspective if you have information to address
3 each of the 11 issues, that would be great.
4 Let's talk about it and, of course, that would
5 be followed up by your written response.
6 That's fine, let's talk about it.

8 Mark. Please jump in with any response. I
9 know that you and Paul have been working on
10 this quite a bit, and I haven't had the
11 opportunity to speak with you in detail about
12 it. You are, in fact, working on it, so

21 that we're looking at that was used to build
DR. MAURO: Well, from my That's fine, let's talk about it.

MR. ROLFES: Yes, Bryce, this is please jump in with any new information that you might have to discuss.

MR. RICH: Will do.
DR. MAURO: I guess -- basically,
we have 11 findings, but they can be grouped. The first couple deal with inconsistencies -let me step back.

Our understanding is the table in effect your co-worker model, your default

1 set of mix of RU material was based on a
2 couple of DOE reports that -- and we reviewed
3 those reports. And we are finding that the
4 data -- the reports, and not the data -- we
5 don't have access to the data -- but our
6 review shows that there's inconsistencies in
7 quantities of material, amount of recycled
8 material, where it came from.

20 there.

DR. MAURO: Yes.
MR. RICH: It is indeed -- well,

1 let me -- let me step back a couple of points.
2 The decision that DOE, or AEC made at the time
3 to recycle uranium, that was a conscious
4 decision and criteria were set up -- the
5 specifications for the contaminants was
6 determined carefully and iterated. These
7 specifications between primarily Hanford
8 because they were the first in the Oak Ridge
9 complex.

11 making the determination of what constituted 12 recycled uranium, and so a number of plants, 13 and Fernald being one of them, made the 14 judgment that once recycled uranium hit the 15 plant then everything was counted as recycled 16 uranium, even though they were in the very

21 effort that DOE went through in the most --

1 reports were published, they recognized almost
2 immediately that there were some discrepancies
3 in the mass quantities of material that was
4 moved back and forth from the sites. 6 and published another report in 2003, which

7 clarified an issue -- and by the way that
8 report in your report is the -- I think it's -
9 - let me see -- well, it's the colored table 10 on page seven, which is the Fernald receipts

11 data, and that comes from the 2003 DOE report

20 The max LOEL between sites has not been
21 clarified, and so there are discrepancies. which clarified only the primary shipments from the primary shipping sites, which was Hanford, primarily -- Savannah River, and a little bit from West Valley, and a little bit less from the high enriched uranium processing plant at the Idaho Chemical Processing Plant.

The -- those shipping
uncertainties were cleared up in that report. Those discrepancies have been explained and I

They initiated a three-year study

1 think clarified in the white paper, the
2 differences in what they mean and constitute.

21 you know, some of this stuff was cleared up in Just to make one additional comment, the dose reconstruction approach is based on determining a ratio of uranium to the contaminants, and it's not really based on max LOEL but on a confidence level that we know the ratios. Those ratios were very well documented at the shipping sites because they were required to by regulations. And so I'll just make those statements at the beginning, John, so that perhaps we don't need to spend too much time on the fact that more uranium was shipped back and forth that may or may not have been recycled uranium.

MR. MAKHIJANI: Can I make a couple of comments?

DR. MAURO: Sure.
MR. MAKHIJANI: Yes, I think -the white paper from our previous comments

1 that were made in the review of the site
2 profile, but some were not cleared up. And
3 the different kinds of discrepancies that are
4 there in the first couple of findings, one is
5 the starting date.

9 recycled uranium exchange between Hanford or 10 other sites and Fernald started in '53 or '54.

11 So that's one discrepancy. The statement in
12 the white paper is that there were very small
shipments prior to '61, so presumably
inconsequential for dose.
MR. RICH: Arjun --
MR. MAKHIJANI: Yes.
MR. RICH: Is that Arjun?
MR. MAKHIJANI: Yes.
MR. RICH: Okay, let me respond to that. You're right as a matter of fact that, again, the daily 2003 report clarified that, and the table that has been reproduced

1 from that 2003 report is on page seven, and
2 that indicates that they started shipping
3 small quantities of five metric tons in '58
4 and -- 6 contradicted by the tables from DOE 2000 that contradicted by the tables from DOE 2000 that

7 are reproduced farther down
8

21 you can't see -- read the top lines, but
MR. MAKHIJANI: Yes, but that is

MR. RICH: As I said, Arjun, the 2003 reports and particularly the shipping reports from Hanford were corrected by 2003.

MR. MAKHIJANI: No, no. No, no.
It's -- hold on. The 2003 report shows absolutely no transactions before 1957. If you go down and look at page eight of our report and page nine you will see there two reports that says -- these are DOE just pasted in the table -- Hanford summary shipments to Fernald.

And you look at that it will say -- it shows July 1, 1954, to 30 of June 1955, they're really natural uranium, enriched

1 uranium, and depleted uranium I think is what
2 those three columns are up there.

4 shipped from Fernald to -- from Hanford to
5 Fernald in fiscal year 1955, and if you look
6 at the next table you'll see Hanford received
7 from recycled uranium from Fernald. You'll
8 actually see an item in fiscal year '54 of
$9 \quad 2,735$ metric tons of natural uranium of
10 Fernald's shipments to Hanford.
So this -- these transactions must have started almost as soon as Hanford started recovering uranium from the high-level waste tanks.

MR. RICH: Arjun, shipments back and forth between Hanford and Fernald did occur prior to 1961. That's not in question.

The issue is was recycled uranium sent back to Hanford, and did Hanford send recycled uranium to Fernald?

MR. MAKHIJANI: That's what it says here.

2 recycled uranium, but that's the recycled
3 uranium report. That does not mean that those
4 shipments were recycled uranium, per se. And
5 that's what I'm saying is that the DOE 2003
6 report corrected the definition of recycled
7 uranium for -- primarily for the shipments
8 from Hanford to Fernald.
MR. RICH: The table says

Now I remind you that the UO is heavy stuff. A 55-gallon drum weighs about 900 pounds or so, and so the -- they did receive, but it is a consistent report in the entire Ohio report and the 2003 mass balance report that they did not put into process recycled uranium until 1961. That was validated, verified by talking with knowledgeable professionals whom we interviewed specifically to that point.

MR. MAKHIJANI: Well, I obviously
wasn't there at the time. All I'm pointing out is when you look at the DOE 2000, the title of the report above the table number

1 says recycled uranium. It doesn't say uranium
2 shipments. It says recycled uranium, Hanford
3 shipments received from Fernald.
4
MR. RICH: Arjun, that's the
5 title of the section.
6
7 is not. Let me assure you it is not. I have
8 the DOE report and can certainly send it to
9 everybody.

11 front of me -- section three, recycled

MR. MAKHIJANI: No, no, no. It uranium, and then it starts out to talk about what they're defining as the shipments in the recycled uranium period.

And what I 'm saying again is that the daily 2003 report is the one that we have accepted, and that is the one that corrected the definition of what constituted recycled uranium, based on the year ' 03 time and Hanford, and then went straight to Fernald.

DR. MAURO: Based on this conversation, I may have given some

1 misinformation. I was under the impression
2 that the recycled uranium mix, notwithstanding
3 the debate of when that started. I guess I
4 was under the impression that you were
5 universally going to assume it's all recycled
6 uranium, but I guess I'm wrong.

8 your model -- it's not really a co-worker
9 model is not to assign those recycled uranium 10 until 1961. Just by way of clarification,

11 because I may have -- I may be wrong.

MR. RICH: The recommendation, John, is that since there's sufficient evidence to indicate that they didn't process recycled uranium at Fernald. And by the way there's in our formal response we have extracted several -- specific information from the Ohio report that indicates that -- and that's a consistency that they did not process recycled uranium until 1961.

Now it would be a simple thing to extend that to the --

1
2 Neton. I've got a couple of questions. Maybe
3 I can shed some light on this.
4
5 consistent definition of recycled uranium.
6 Could you expand a little bit on that because
7 we ran into this problem at other facilities
8 where they were calling recycled uranium
9 essentially any uranium scrap to have been

11 back, remelted and reused. That was also

21 the issue of -- once the recycled uranium from
DR. NETON: Bryce, this is Jim

You said that there was no gathered from machining and such and then gone considered early on in the forties recycled uranium, not to be confused with recycled uranium that had originated and been irradiated in a reactor.

MR. RICH: That's correct, Jim.
That's one of the problems.
DR. NETON: And that's one of the problems.

MR. RICH: But even beyond that the generating site hit the plant, some of the

1 plants simply defined every single -- all the
2 inventory in the plant as recycled uranium.

4 were generating natural uranium specifically
5 from '53 to '62 period of time in thousands of
6 metric ton quantities. And they defined all
7 of that as recycled uranium, but it didn't,
8 you know -- and producing uranium metal parts
9 for Hanford from that site.
DR. NETON: It seems that we have got definitional issue here.

MR. RICH: What we've done there is, without trying to resolve this, just simply accepting the fact that there is discrepancy in the definition of recycled uranium.

We have a surety from the threeyear review by DOE that the -- and they intended to extend that to the secondary shipment but didn't get that done.

But we have a fair degree of confidence because of the extensive review

1 later that they knew exactly what came out of
2 the UO3 plant at Hanford and went to the other
3 sites, and that then qualifies as recycled
4 uranium, and that's the only uranium that
5 inserted the contaminants that we're talking
6 about into the system.

DR. MAURO: Then am I correct that you're not going to assume recycled uranium beginning from the very beginning of operations, even though it assumed recycled uranium?

MR. RICH: It is the recommendation of the white paper that it need not be considered prior to 1961.

DR. NETON: That is not
represented.
DR. MAURO: Okay, that corrected
my previous statement. Thank you.
MEMBER ZIEMER: Bryce, Paul
Ziemer here.
MR. RICH: Yes.
MEMBER ZIEMER: Could you --

1 we're trying to pull up this report here, Mark
2 and I -- or Mark is mainly, but what -- what's
3 in the report that we're looking at from SC\&A
4 it's called Table 3-7. I guess you have that
5 report; it's on page eight of the report,
6 where it says recycled uranium did I
7 understand you to say that that was the title
8 of the chapter from which this table was
9 extracted?

MR. RICH: Yes.
MEMBER ZIEMER: So there's a chapter called recycled uranium?

MR. RICH: Yes, that's section
three.
MEMBER ZIEMER: And then there's
some other tables and then -- and some narration, and then this table appears -MR. RICH: Yes.

MEMBER ZIEMER: -- which is a summary of shipments, and the table title has nothing about recycled in the title of the --

MR. RICH: Well, initially --

1 when Hanford put out their mass balance report
2 as part of the overall DOE effort they -- it
3 was a recycled uranium report.

4
5 understand that. Yes, I was just trying to
6 clarify, because I think we originally thought
7 that the table had as part of its heading
8 recycled uranium.
MR. RICH: And they could have
intended that because of the fact that they recycled. You know --

MEMBER ZIEMER: I see what you're saying.

MR. RICH: They got, as Jim pointed out, they got --

MEMBER ZIEMER: The broad --
MR. RICH: -- natural uranium
metal parts from Fernald --
MEMBER ZIEMER: Yes.
MR. RICH: -- and then they
processed it and had a bunch of scrap after they'd made the fuel elements themselves, and

1 they sent that back.

21 uranium.

MEMBER ZIEMER: Got you.
MR. RICH: So they recycled that. It was not recycled uranium in the sense that

MEMBER ZIEMER: Got you.
MR. RICH: It came out of the UO3 recycled uranium plant at Hanford. And so the consequence, there is legitimate confusion about what -- how much recycled uranium, but the 2003 cleared that up, at least how much was injected into the system. And that's based on recorded analysis, primarily plutonium but neptunium and technetium and they did make gross -- right from the very start when they started shipping from the U03 plant, they made gross beta and gross gamma analyses and shipped it gradually to -- well, that's a topic specific on gross -- on a fixed amount of uranium samples compared to aged

MEMBER ZIEMER: Yes, thanks,

1 Bryce.

6 to look at it.

8 it.

18 it in the Ohio field office report. It might
19 be a numbering mistake.

21 -- is that the one out of the Ohio field
22
DR. MAURO: Well, good. It sounds like that there's a response to our concern about this confusing information.

MR. MAKHIJANI: We'll just have

DR. MAURO: We'll have to look at

MR. MAKHIJANI: And I need to
find the reference from which that thing was taken.

MR. RICH: Those come from section three.

DR. MAURO: And we -- by the way, we also agree that the real issue is the mix, notwithstanding --

MR. MAKHIJANI: I'm not finding

MEMBER ZIEMER: Is the DOE report office, Bryce? 2000, report? about the --

MR. RICH: Yes.
MEMBER ZIEMER: DOE --
MR. RICH: No, no, it's the one on the Hanford field office.

MEMBER ZIEMER: Okay, so it's SRDB

MR. RICH: BR 2003 according to -

MEMBER ZIEMER: The June 30,

MR. RICH: Yes, June -- well it's a July 5 th is the date on the $C R L$ report.

MEMBER ZIEMER: I'm actually looking at SC\&A's references, so maybe they didn't cite this one.

MR. MAKHIJANI: I know that we
used the same reference as the white paper, to be not confusing.

MR. RICH: I see. You're talking

MEMBER ZIEMER: I was again trying to find the report that the table is

1 came from. I think it's the DOE report.

4 report? Hanford?

Thanks.

MR. RICH: It is the DOE --
MEMBER ZIEMER: Is it the 2003

MR. RICH: Two thousand A report.
MEMBER ZIEMER: Here it is.
Okay, got it. Thanks.
MR. RICH: It's the --
MEMBER ZIEMER: Review of
Generation and Flow of Recycled Uranium at

MR. RICH: Right.
MEMBER ZIEMER: Yes, good.

MR. RICH: By the way, these are very lengthy documents, thousands of pages a piece, so --

MEMBER ZIEMER: Yes, we won't read them into the record.

MR. RICH: Thank you.
DR. MAURO: The real issue, the more direct issue is the mix, and I think --

1 again, looking at Table 10, page 11 of our
2 report, the question becomes -- in that column
3 where it says mass concentration of parts per
4 billion uranium, we looked into that to see,
5 okay, is the literature on which that -- those
6 numbers are based, does it make a compelling 7 case.

9 Clearly, the 100 part per billion number -10 when you look over the entire duration of when

11 recycled uranium was being handled, that 12 number overall is a sound number to represent 13 -- for example, if a person were working there 14 for an entire time period, assuming that all

15 other -- let's say '61 on -- assuming one
16 hundred parts per billion would probably be 17 claimant favorable because you've demonstrated 18 what the data in general shown that the parts 19 per billion of plutonium is generally less 20 than that, except there are some exceptions.

> And this is where we felt we a hard time convincing ourselves there may have

1 been time periods and locations where people
2 might have been exposed to higher values, and 3 we could not discern.

There were two reasons we say
5 that, two reasons. The first is in going into
6 the reports that stand behind us, we were not
7 able to get outstanding data that -- one of
8 the inquiries we made is that --

DR. MAURO: When we were doing our work on this one of the things we were hoping to look at was the original data, the data set that was used by DOE to come up with their reports. We really had to go to the original data, that really only had are the reports, the DOE reports themselves which even though they are large reports, they don't actually give you the original data upon which these numbers are based.

So that was one -- something to
look for to convince ourselves that that 100

1 number was a well-founded number.

21 sample in all of the process streams. They
22 used the boot strap analysis technique.

2 per billion was -- of plutonium, just using
3 that as the example, was that it covered even
4 the maximum of most of the streams, with the
5 exception of several streams that were $\begin{array}{ll}6 & \text { identified as the -- what they call the } \\ 7 & \text { receipt of the poos on a plutonium over }\end{array}$ $\begin{array}{ll}6 & \text { identified as the -- what they call the } \\ 7 & \text { receipt of the poos on a plutonium over }\end{array}$ 8 specification.

16 that. Whitetail got some of it and they
17 simply buried most of it and sent the rest
18 back, but Fernald did take it with the intent 19 of blending it into the rest of the stock. It

21 specifically in the plant. They got --
The reason we settled on 100 parts

Let me go back a step just for clarification and say that in 1964 they were running short of uranium and they decided to reprocess the plain tower tail from the gaseous diffusion plants for recovery of uranium.

Fernald and others objected to doubled the inventory of plutonium received two shipments from '64 and another

1 set in the eighties.

4 and it covered the highest level of
5 contamination in the plants.

7 tails from -- they came in as sealed
8 containers and then, of course, they were
9 anxious about them and so they really used
10 very, very careful operating techniques and
11 blended them as soon as they could.

21 as a consequence plutonium goes through the
And so the analyses reported in the Ohio report, by the way, was exhaustive

When they brought those high level
ontainers and

It turns out that there were a few barrels, a little bit of it that continued to be on site of those high level tails from the gaseous diffusion plants. I might just add too, parenthetically, that when you convert uranium to the US6 -- uranium US6 at high temperature is volatile. Plutonium is not, and it falls out. Ninety-nine percent of the plutonium falls in those flame tower tails and gaseous diffusion plant comes back out in

1 parts per trillion as opposed to parts per
2 million, and that's something to kind of
3 remember as you get some of the enriched stock
4 from the plutonium -- from the gaseous
5 diffusion plants.
DR. MAURO: Well, I guess -- we
7 talked -- the reason this is coming up is
8 there was this tower ash --

11 indicated, so that none of the production
DR. NETON: The Paducah Feed
Plant ash came in and it was blended, as Bryce workers were exposed to the concentrations -none of the main production -- uranium production workers were exposed to those levels of concentration.

DR. MAURO: At our last meeting -

MR. ROLFES: Most importantly for that data set, for those workers who handled that material, they all participated in a specific plutonium bioassay program, so --

DR. MAURO: No, we covered the

1 tower ash very well --

3 done that.

5 workers that dealt with that were wearing
6 respiratory protection --
DR. NETON: Yes, I thought we had

DR. MAURO: Not only that the

MR. RICH: Yes, they were and airline a good share of the time.

DR. MAURO: And we're okay with
that. That's not the issue.
MR. RICH: But what I want to say is
that this Table 5 in our white paper is the recycled uranium summary by the process subgroups, and in looking down through there you see a couple of them that are fairly high, but even those are pretty well covered by the 100 parts per billion, not the highest values that you'll find in Table F-1 in the Ohio report, but it's -- but for the average process streams --

Plus there's -- as a process enriched uranium, it turns out that the

1 majority of the recycled uranium that came
2 into the plant was in the form of enriched
3 uranium. When they actually reduced it to
4 metal in Plant Five, the magnesium fluoride
5 sucked up the plutonium and that was one of
6 the higher process streams. They reprocessed
7 the magnesium fluoride and -- for the recovery
8 of uranium because it was enriched. If it was
9 not enriched it was below economic recovery
10 limits and they disposed of it in the pits.

21 mission we received from the last meeting was
reprocessing was one of the process streams that showed higher levels, and that would have been run through a mill in Plant One, for example, the Titan Mill, and broken up into particles of a size that could be run through the recovery plant.

DR. MAURO: The special cases that you are making reference to, we agree with. But then we -- then we -- part of the to look at this boot strap analysis.

1
2
3 disagreeing with anything you're saying about
4 these special cases, so we could -- we agree 5 with that.

7 strap issue--and boot strap means how did you
8 take the data--how did DOE take the data to
9 come up with the concentrations. I'd like to
MR. RICH: Yes.
DR. MAURO: Now -- so I'm not with

But then we looked into the boot direct your attention to page 23 of our report. I'll give you a chance to open it up.

And what we did is we looked at the data. Harry Chmelynski might be on the line; he helped us with this. And we're finding that the data that you had followed along normal distribution, and when we derived the mean of these various groups, $1 \mathrm{~A}, 1 \mathrm{~B}$, et cetera, you could see -- if you look at the table there are some rows that are in green. Okay, on page 23 it's -- it's Table A-1, if everyone has it in front of them.

And we're seeing a fairly large

1 difference between the mean that we would get
2 versus the mean that is reported, that was
3 derived using what we're referring to as the
4 boot strap method.

6 what is this boot strap, it was our -- it was
7 my understanding that this was a way to deal
8 with outliers, and so we see a little bit of
9 a incongruity between the mean that we -- the 10 ratio -- at least with 1-A we get a 5.1 times

11 higher mean, and the same thing goes for 8, 9, 12 and 10-A. We get a substantially higher mean

13 than the boot strap method does, which starts
14 to bring us --

Now maybe I got this wrong, but it appears to bring over the 100 parts per billion.

MR. RICH: Well, again, let me draw your attention to 10-A is the tower ash and decon residue.

DR. MAURO: Okay.
MR. RICH: And Group A is -- is

1 the enriched magnesium fluoride that I just
2 mentioned.

DR. MAURO: Okay, so you're saying the -- this is important. Now we're getting to the bottom of this.

MR. RICH: Yes, so what I'm saying is that we were satisfied that even whatever statistical analysis you used we were pretty well covered with the 100 parts per billion.

DR. MAURO: Okay, so what I'm hearing is that the $1-\mathrm{A}, 8,9,10-\mathrm{A}$, which where we're getting a mean that's higher than the boot strap mean, the reason is that when you did your boot strap the -- the -- these very special cases that are -- that were-that you described earlier were taken out of the data because it was dealt with separately and under a very controlled circumstance so, therefore --

MR. RICH: When we established the 100 parts per billion, John --

1
2
3 fact that those streams, number one -- well in
4 the first place when they did the statistical
5 analysis using the boot strap mean it will
6 come out with different analysis techniques a
7 little bit higher, that's true. But these
8 were processed streams that had an
9 extraordinary amount of care when they were
DR. MAURO: Yes.
MR. RICH: -- we considered the currently being inserted into the dilution system.

And so we -- we, frankly, were not
worried about those streams because of the
fact that they are well known and well controlled.

DR. MAURO: Okay, so -- so our
derivation of the mean where we included all the data -- we shouldn't have done that.

DR. NETON: You can do whatever you want.

DR. MAURO: We can do whatever we want. We did that, and for good reason.

1 It answers my question, because quite frankly
2 I didn't understand why we were coming in five
3 times higher, which puts us well over the, you
4 know, one hundred.

6 we understood NIOSH did not actually do its
7 own analysis. They used the analysis in the
8 DOE reports which contains this boot strap
9 mean, and that you used the numbers in
10 Appendix F of the Ohio Field office report --
DR. NETON: That's correct.
MR. MAKHIJANI: -- directly from that. You did not look at the raw data, and you didn't do your own analysis.

DR. NETON: John actually called you about that or sent you an email about that.

MR. RICH: Yes. We looked at it and considered that, but quite frankly, you know, the majority of the contaminant levels came in less than five parts per billion, and most of it from the gaseous diffusion plant

1 came in under parts per trillion level, but 2 where --

4 first -- 6 defaulting to the highest reasonable level and 7 without really going overboard in these 8 special streams.

11 measurement of trace contaminants. I mean,
MR. RICH: -- we dealt with

MR. MAKHIJANI: When is the first document that we have where we have a this Paducah thing that's on was in the seventies and eighties, and I know there were shipments, there were measurements, there were all these precautions that were taken and, you know, especially in the eighties. I think this Paducah thing was in the eighties.

MR. RICH: Right.
MR. MAKHIJANI: When is the earliest actual site measurement? Hanford ships recycled uranium. Here's the label. Here is the plutonium that was in it that's in

DR. MAURO: Okay, when did the

1 a document from the time.

21 X to Fernald.

MR. MAKHIJANI: So all --
MR. RICH: Pardon me?
MR. MAKHIJANI: I'm not aware of early data that's documented that says --

MR. RICH: In the early days the
-- the responsibility for defining the
contaminant concentrations were the responsibility of the shipping sites.

MR. MAKHIJANI: And so do we have like a Hanford document that says --

MR. RICH: Yes.
MR. MAKHIJANI: -- we're shipping

MR. RICH: The 2008 report is

1 some documentation of the historical levels in
2 those early times.

4 the --

6 summary data.

11 page one.

21 chapter is about recycled uranium in the sense
MR. RICH: Some of those are

MR. MAKHIJANI: Could we go back
on the list of that 2008 report? The 2008
report is about recycled uranium that contains trace contaminants. That's what it says on

MR. RICH: That's true.
MR. MAKHIJANI: And then at the start of chapter three, section three, actually recycled uranium that head appears on every single page, and at the top of page one of section three which I have here -- I just downloaded it. I couldn't find it in my computer.

Section three affirms that this that we're talking about it here.

1
2

4

6 sentence it says the transactions into and out
7 of Hanford were focused on the 300-A Pugh
8 Fabrication Complex that were used at all
9 three plants.
MR. RICH: Then I'll go back and say that a report issued by DOE three years later and identified as DOE 2003 corrected the -- well, the primary RU shipments.

Now you'll notice in the second

MR. MAKHIJANI: The first line in chapter says, "This chapter is designed to quantitatively define the recycled uranium flows to and from Hanford. The transactions into and out of Hanford will focus on 300 area fuel fabrication complex."

But the whole thing is about recycled uranium.

MR. RICH: Initially it was so.
It was corrected by the 2003 report.
DR. NETON: I mean, Bryce, is
there definitive language of the 2003 report that speaks to that?

1

2 speak to that.

4 as a later report, I fail to see why we
5 wouldn't accept that. I mean, we have a 2000
6 report where it's been superceded and there's
7 language in there if we can find it that says
8 that it corrects what was possibly an error in
9 2000. I mean, why --

11 put out in the 2000 report it was a matter of
12 definition of what constitutes recycled
13 uranium.

15 argument there.

22 you need to -difficult or --

MEMBER GRIFFON: He didn't go back to the raw data because --

MR. RICH: No.
MEMBER GRIFFON: -- it was too

DR. NETON: I don't know, Mark,

2 it's a matter of timeliness on re-evaluating
3 data that's already been summarized for us.
4 The bottom line, getting into the recycled
5 uranium issue is really very unlikely to
6 affect a significant number of compensation
7 decisions, if any. Bottom line, we need
8 uranium bioassay data to reconstruct intakes
9 and make a good balanced and professional
10 decision on the information --

21 organs.

MR. ROLFES: Once again, I mean,

Go ahead, John.
DR. MAURO: I think that -- let's say we're dealing with 100 parts per billion versus 50 versus 200, okay --

MR. ROLFES: Right, right.
DR. MAURO: Now what happens to
the dose, to some of the organs when you change that assumption. I think you have to think of that.

MR. ROLFES: It can for certain

MR. MAKHIJANI: Moreover, it's

1 not just about plutonium and trying to --

5 whether or not we're going to use the fact of
6 this 2000 report that's been superceded as
7 evidence of what the plutonium concentrations
8 were, or we're going to rely on the 2003
9 report that superceded the 2000 report.

21 is primarily in the mass flow data, and, by That's important to me --

MEMBER GRIFFON: Yes.
DR. NETON: -- and if SC\&A opinion that the 2000 report is more accurate I'd like them to show me why the 2003 report is not.

MR. RICH: And beyond that, Jim, we have used the 2000 report from Hanford because it's a wealth of information.

DR. MAURO: That's right.
MR. RICH: My primary correction the way, I'll remind you again the mass of

DR. MAURO: Yes, we haven't gone there yet.

DR. NETON: Let's decide first

1 uranium is not at issue so much as the ratio
2 of the material.

4 inventory control or the shipment control
5 regulations, they did analyze every -- well,
6 as a matter of fact they analyzed the product
7 from U-plant and PUREX, and any other plant
8 that contributed products to the UO3, which is
9 a uranyl nitrate reduction to UO3 for
10 shipment, and those were all analyzed prior to
11 the point they were accepted by the UO3 plant.

DR. MAURO: And that's from the
very beginning?
MR. RICH: That's from the very
beginning, right from the time that they decided to send the first barrel out.

DR. MAURO: Which is '61 as
opposed to '57 or '58?

21 this ash waste there was a big discrepancy
MR. RICH: That's true.
MEMBER GRIFFON: Bryce, just a little background, wasn't there an Ohio Field office mass alance report also? I can't seem to find that one.

MR. RICH: Yes, that's the one that we're reporting as being the Fernald mass balance report.

MEMBER GRIFFON: Okay, okay.
MR. RICH: The Ohio field office report covered RMI, West Valley, a number of other sites in the Ohio Field office.

MEMBER GRIFFON: And then I'm trying to remember, but you're very familiar with these reports obviously, but I seem to remember that you said that the shipper usually in the early years especially characterized the contaminants.

MR. RICH: That's true.
MEMBER GRIFFON: I remember with between the Paducah numbers and the Fernald

1 reports.

21 characteristic of those flame tower tails that
MR. RICH: That's true.
MEMBER GRIFFON: How did you weigh -- how did you come down on those?

MR. RICH: At that later time period, of course, and because of the fact that they were shipping known higher level contaminant level stuff they analyzed it at both ends, no question.

And at that period of time they did more analytical --

MEMBER GRIFFON: Well, there was a big disparity in the numbers, and I guess that's my point is -- Jim had asked me why don't we accept the 2003 numbers. Why don't we not go back to the raw data. You know, this is part of my reasoning because I looked at those reports years ago and you have these discrepancies, how do you handle them?

MR. RICH: Well, and then the had accumulated over a number of decades, they

1 were not uniform in and of themselves, and as
2 a consequence there was a -- a considerable
3 amount of variability in the sampling
4 technique itself, and part of those were
5 sampled in -- it was mixed in Plant One.
DR. NETON: Right, but I thought
7 the feed plant issue was not necessarily on
8 the table because we recognize it was a
9 separate stream. It was --

11 I'm making is --

MR. RICH: It was indeed blended down and then analyzed again, but they analyzed the stuff that they got. They were highly concerned about it.

MR. MAKHIJANI: Well, the specific numbers that are derived in this boot strap analysis and that are in the white paper are not from the 2003 report, which doesn't contain this information.

MR. RICH: No, that's true,
Arjun. The numbers are in the Ohio -- or the

1 Fernald report.

5 done in 2000. The later report is 92 pages
6 and it covers a whole nuclear weapons complex
7 and contains almost no detail.
MR. MAKHIJANI: And those are all
from the year 2000 which was part of the same series of recycled uranium analysis that was

The -- all of the detail is in the 2000 reports. Now if these 2000 reports were seriously in error to an order of magnitude --

MR. RICH: Arjun, let me remind you again the 2003 report corrected only the shipper's numbers.

MR. MAKHIJANI: Yes, but all of the concentration numbers, so we're saying that we're going to accept everything in the 2000 reports, much of which is surrogate -which are assumed numbers from some other site because individual shipments are not characterized.

MR. RICH: Arjun, the numbers were lower as they left the plant, the shipper

1 -- the generating plant --

3 question.
4
5 the early years were much lower than they were
6 after -- until -- after the POOS material had
7 been processed from the gaseous diffusion
8 plant.

21 to a couple of the people, one specifically
22
MR. MAKHIJANI: That's not a

MR. RICH: -- and the numbers in

MR. MAKHIJANI: We've seen no early year actual data other than what's reproduced from literally some documents in these reports, which are --

MR. RICH: Arjun, admittedly we
have accepted the analysis from that extensive -- the data was collected from 1985 to 2000, but it was a major effort by a large team at each of the plants in the year 2000 -- in 1999 and 2000.

And, no, I have not personally looked at all of the raw data. We -- I talked that served on the team that put that report

1 together at Fernald. He says as far as he
2 knows the raw data is available. He's not
3 sure where it is, but it probably would not
4 have been disclosed.

6 what -- what sort of impact will this have on
7 a dose reconstruction. And I think that's
8 what we need to keep in mind.

10 of approaches for dose reconstructions. If an
11 individual has uranium uranalysis we would use 12 that uranalysis to calculate an intake , for

MR. ROLFES: The bottom line is

You know, we have different types example, for lung cancer.

If that claim were still under 50 percent probability of causation, we would also consider other sources, other potential intakes, for example thorium. We would apply intakes for thorium. If it was still under 50 percent we would consider other sources such as radon. If it was still under 50 percent I don't know what else we can do to put it over 50 percent. It gets to a point,

1 you know -- we can also take a look -- we are
2 already accounting for recycled uranium
3 components, the radiological contaminants that
4 were sent in back to Fernald from the reactor
5 sites. We're taking a look at that.

9 mass basis. We've defaulted to an order of 10 magnitude higher.

DR. MAURO: No, no, no. The 10
part per billion was what was shipped from Fernald to other sites. But Fernald was processing the material. The 100 parts per billion is -- is what we're -- is what's on the table here. In other words, is that a good default number for your recycled uranium. The process by workers at Fernald from 1961 onward --

MR. ROLFES: Right.
DR. MAURO: -- and the reason --
well, there are a couple of reasons this issue

1 emerged. One is the boot strap. That was
2 explained. In other words, when we wrote that
3 boot strap was data. And we came up with a
4 number that was five times higher.

6 is oh, no. When we did the boot strap we
7 didn't include these extreme values because
8 they were treated specially.

21 know, it's a complete report.
MR. CHMELYNSKI: All we're

1 pointing out are some -- perhaps discrepancies
2 or different answers that are obtained using
3 the two methods.

4
5 that the bottom line is still the same as John 6 indicated though that there are reasons why we

7 went with 100 versus using the entire set of
8 data because of these special campaigns that
9 were processed.

11 hearing more fundamental distrust by SC\&A of
DR. NETON: Right, and I think

So I think that's okay. I'm the things they feel they have some need to go back and look at the actual raw data set that exists, and, frankly, I don't know if we can find it and how much work that would be to obtain that.

MR. ROLFES: Getting back, you know -- literally there's a small population of claims that this, once again, is going to be applicable to because if we have a claim that hasn't achieved 50 percent probability of causation using intakes reconstructed from

1 uranium, from thorium, from radon, from
2 medical x-rays, from external exposure -- you
3 know, one additional thing which, you know,
4 we're arguing over something that really is
5 not going to be a significant -- you know,
6 alone it is if we are solely using that as the
7 basis for dose reconstruction; however, there
8 are many other sources of other information
9 where there are more, you know, more first-
10 hand information, more likely exposures, for
11 example, to uranium than a contaminant that a 12 worker may not have been exposed to, and not 13 at the level that we've assumed in our

14 technical basis document.

21 reconstruction--off the bat when we interpret
We have additional sources of
bioassay data to use that we could reconstruct someone's plutonium intake for -- for the POOS material, the out-of-specification material, but what I guess I'm getting to is the assumptions that we make in a dose someone's urinanalysis data we assume a

1 constant chronic day-in, day-out exposure
2 using that individual's bioassay data or
3 reconstruct that uranium intake.
4 Then many of the other cases, for
5 example, as we have pointed out for, you know,
6 for 40 percent of the cases that we've
7 completed -- excuse me, 40 percent of the dose
8 reconstructions that we've completed for
9 Fernald have been compensatory. Largely,
10 those decisions are based on the individual's
11 uranium bioassay data or the individual's
12 monitoring data.

21 assumption regarding 100 parts per billion of
The cases that we have not been able to get over 50 percent probability of causation, we've thrown worst case scenarios which exceed, you know, exceed the credible amounts of uranium that could have been ingested, inhaled, critical amounts of thorium --

DR. MAURO: I understand, but, Mark, what you're really saying is that the thorium is irrelevant, and, you know, it's

1 not.

2

4 impact on a significant number of claims.
5 We're talking about a very, very few claims
6 today. The entire -- the past, you know, the
7 past several working group meetings, we're
8 talking about a very, very small fraction of
9 the Fernald work force that were potentially
10 exposed to some of these what-if scenarios.
MR. ROLFES: It's not irrelevant, but it's not going to have a large scale, huge exposed We're talking about very, very low odds of people being exposed to, you know -DR. NETON: Yes, Mark makes a very good point. I mean, we were very conservative in our approach in being claimant favorable, but to get past this we have to decide whether there is a credible scenario that exposes workers at Fernald to greater than 100 parts per billion on a continuous basis outside of these areas that we identified as special campaigns.

That's the bottom line, and if

1 SC\&A believes that it's well above 100 parts
2 per billion and demonstrates that somehow we
3 need to look into that.
4 DR. MAURO: We can't We can't
5 demonstrate that.
6
7 question? The -- I think for some of these
8 batches, including some of the very high ones,
9 we do have data, and I think whatever number
10 you come up with there's some defensible
11 number of doses that you could come up with, 12 and it can be claimant favorable, assuming 13 there's no supply there.

21 and seventies in terms of how the recycled 22 uranium originated.

1
2 know, they started the U-plant operation in
3 1952, and that's sort of like a raffinate
4 problem. It has -- all the plutonium had
5 already been extracted from it. So you have -
6 - you're processing a mixture of uranium and
7 fission products first of all, so the whole
8 question of whether plutonium is a key
9 radionuclide on which to hang your hat for all
10 the other trace contaminants is a very
11 relevant one.

12

15 think it is.

18 dosimetrically it probably is. I mean, I
19 looked at it --

21 on the relevant amount, say, of plutonium you
22 have, relative to --

1
2
3 have a process difference which means that
4 something that was part of a reprocessing
5 operation where uranium and plutonium are
6 being separated from each other after the
7 fission products have gone. And in the 8 earlier period where uranium efficient

9 products are being separated from each other 10 after the plutonium is gone. I mean, there

11 are traces of everything that are left,

21 chemical processing -- the initial plant's
DR. NETON: Yes, go ahead.
MR. MAKHIJANI: In any case, you obviously, but in the main.

So that sort of one whole set of questions that arises from that is do we have any data from the Hanford shipments of U-plant uranium and what was in it.

MR. RICH: Arjun, can I respond just briefly?

MR. MAKHIJANI: Sure.
MR. RICH: You're going to make a business was separation, which was not a

1 liquid column separation. It was a -- it was
2 a settling operation --

5 processors. Then they went to a hexone
6 system, which is a liquid-liquid column
7 extraction system. That's the second
8 generation system, and they were using that
9 plant to separate both plutonium and uranium, 10 when they decided that indeed they needed the 11 uranium.

13 to when they started in 1951, the stored the 14 raffinates -- the uranium with the raffinates, 15 and they refit U-plant with a third generation

16 chemical separation which was TBT in an
17 organic kerosene base. And that plant was
18 PUREX, and it was the best that technology
19 could provide and as determined by the DS for

21 as could be done. That was the best
22 technology available. 3 They gradually changed it to PUREX. But the 4 U-plant was the third generation uranium

5 extraction system. They extracted the uranium 6 in a slurry form out of the tanks. It had

7 separated into a slurry and an aqueous stream 8 and 72 percent of uranium was in the slurry.

I started in '53 at the chem plant, and that was a hexone based system. The chemical processing for U plant was the best technology that was available. It was a third generation. They blended that with the other plant, not the PUREX plant but the other plant, and the products were, again, analyzed as being acceptable to -- for feed for the U03 plant.

There's no reason to believe that the U-plant process was incapable of providing the best separation of any of them, and so as a matter of fact I think they planned it for -- because it was good stuff and the other plant was -- the second generation plant was not so good.

2 the -- the product for $U 03$ plant met specs and

21 which now means the neptunium, the technetium,
So that also is a -- but, again, based in the very early days on gross beta and gross gamma for others than the plutonium.

And so I would say that even in the very earliest days they had a very good handle on the contaminant levels.

DR. MAURO: We've changed subjects, and that's good. I think that we've exhausted our discussion on 100 parts per billion, okay? We know where that is. What we've just done is say what about the other radio nuclides, because now we're saying that there are a lot of different ways in which the uranium was separated and processed.

MR. RICH: And my comments were directed directly to that.

DR. MAURO: I just wanted to make it clear that we changed subjects. And that's good, because I wanted to move to this other, thorium 232, ruthenium, these are the other

1 assumptions that are embeded.

5 if, you know, you would expect the
6 relationships here to be labile.
Now I think what we've heard is
that there is not a tight couple between the ratio of plutonium, neptunium, so it's not as

What I mean by that is these
ratios have been selected by NIOSH under the premise that it is -- represents a fairly bounding set of assumptions. We heard your arguments regarding 100, and I guess we really don't have -- I mean, I understand them now. And so it's on the table. Everybody understands the story, and I guess I don't feel there's any more I can add to it than what's already been said.

Now we're talking about these
other radionuclides. Now what I just heard is that the separations process, the chemistry that we use, the columns changed over time which affected, I presume, the composition of the trace levels of various fission products

1 that were actually, some of these, activation
2 products in that the eluent came off the
3 separations.
4
5 I'm hearing is there were specifications, so
6 the product that came out before it was
7 shipped from Hanford -- these particular
8 numbers that we're looking at, the 3,500 parts
9 per billion neptunium, and let's go to
10 ruthenium, which is 50 microcuries per pound
11 of uranium.

12
13
14

18 are the -- based on the specifications, the 19 maximum specifications that can be shipped for 20 the fission product, you know the gross

21 contaminants that would give you a gross beta
22 or a gross gamma, you know, the strontium-90

1 or the cesium-137 or other longer lit fission
2 products which would be the isotopes of most
3 concern.

4

5 actually have like records of the actual
6 measurements made.

9 have the date, but they did ship from a - a DR. MAURO: Well, we don't

measurements mad

period of time. I forget right now. I don't gross beta, gross gamma measurement with a-they used a Shonka chamber to begin with, but then they switched to -- when -- again when the spectrometer became available then they shifted instead of the gross gamma to a spectrometer measurement in which they measured the specific isotopes.

DR. MAURO: You know, when we typically do a job like this, what we do is go back to the original data and we convinced ourselves, yes, it looks like we sampled from the data. We looked at some data from different campaigns, perhaps different time

1 periods and look at the results of the
2 analysis of the material and say, yes, it
3 looks like across the board these numbers are
4 holding up. 6 do that. So what we're really doing is

7 accepting our fate that yes, DOE, you know, 8 did rigorously enforce that specification and,

9 if that's the case, that's the case.

11 here where we're sort of taking it on faith
We're really not in a position to

It's just an unusual circumstance that those specifications were met, and we're not really in a position on behalf of the work group to go into the original data and convince ourselves, yes, it looks like that was universally the case.

MR. RICH: Some of that data is contained in the DOE 2000 and the 2000A report for Hanford Mass Balance Report, also in the Hanford Technical Basis documents.

DR. MAURO: Yes, I have nothing more to add.

1
2 where we take this at this point. I mean, I
3 did -- I did pull up the Paducah report while
4 we were sitting here and this is sort of what
5 I had remembered the -- it's on Table 4.2-2 in
6 the Paducah mass balance report.
MEMBER GRIFFON: I'm not sure

And it says 1980 feed plant ash average plutonium concentrations in parts per billion and was 37 to 3,118 . And these are the results from 16 hoppers analyzed by FMPC, so I guess that was sort of the Fernald analysis.

But you're saying this is that --
DR. MAURO: The special case.
MEMBER GRIFFON: -- special case that's --

MR. RICH: Yes, and that's very typical of that type of material that came from all of the gaseous diffusion plants. MEMBER GRIFFON: Right, right. MR. MAKHIJANI: What is the date of that?

6 sampled?

MEMBER GRIFFON: This is the mass balance Paducah report --

MR. RICH: It's a 2000 --
MEMBER GRIFFON: 2000, yes.
MR. MAKHIJANI: The data that's

MEMBER GRIFFON: Oh, the data that's sampled? It's summarizing the 1980s, so I imagine --

MR. MAKHIJANI: You know, actually, the SC\&A report said that beyond a certain date -- and I would suspect, I don't know, probably somewhere in the 70's or whenever from the time that we had these kinds of numbers based on measurements at the time, we can actually trace it that the stated ratios are probably claimant favorable for long-term workers when applied, et cetera.

The report actually says that. The questions are when you don't have that kind of information and you have lots of surrogate data, you have process differences

1 in how the plutonium was arising. You have
2 differences, possible differences in ratios of
3 the plutonium fission products, plutonium,
4 neptunium, and so on.

6 that was done of the stack data that is in the
7 white paper and you look at that, you see some
8 stacks have pretty much fission products.
9 Some stacks have, other than the plutonium, 10 very little fission products, and this is a 11 cumulative thing from 30 years. 21 excluded from the white paper analysis, then

If you look at the stack analysis

MR. RICH: But, Arjun, what we've done from a philosophical standpoint is take a -- we used the data from the highest contaminated years.

MR. MAKHIJANI: So even if you look at the stack data, the analysis that's done in the white paper shows, you know, if you include the Titan Mill sample, which is after all a cumulative sample which was you come up with a part per billion of

1 plutonium of more than 100 in an average,
2 which is a cumulative average.

4 ppb if you exclude the really high number.

6 let me just tell you again. We included the
7 effluent filter data primarily as an
8 indication that, in a gross way, that the
9 levels were not off by --
MR. MAKHIJANI: That's right.
MR. RICH: -- several orders of
magnitude.
MR. MAKHIJANI: Yes, I
understand.
MR. RICH: We did not use those numbers because of the fact that there is such a great deal of uncertainty associated with the finding those as being streams to which the workers are exposed.

MR. MAKHIJANI: Right, I
understand that it's a kind of confirmatory exercise that you actually didn't use those

1 numbers.

3 Arjun, we did not feel that even the Titan
4 mill, which was a process equipment and not a
5 sampling equipment that -- that that number
6 was higher, obviously higher that it
7 invalidated the -- the other -- to make a 8 conclusion.

21 uranium, I mean, we're assuming they would
MR. RICH: And as a consequence,

MR. MAKHIJANI: Well, whether it did or not as a validation exercise or a confirmatory exercise is more iffy than what was presented in the white paper.

MR. RICH: But you see that that was, you know, one or two samples in a whole bunch taken across the plant, and if you're not going to use that to establish your ratio then, of course, this is a validation that the numbers are not too bad.

DR. NETON: Let me ask a silly
question, I suppose. When Fernald was making have 100 parts per billion plutonium in their

1 feed stock on a continuous basis.

DR. MAURO: Starting in '61.
DR. NETON: Starting in '61. But
the majority of the uranium that they
manufactured did not come through the
recycling room; is that correct?
MR. RICH: That's true
DR. NETON: We have assessed what that ration is? I mean, in other words, you know, we're just assuming --

MR. RICH: During the maximum time that they were processing the high level feed from the tails from the gaseous diffusion plant, on occasion they did bump up against the 10 parts per million in products that they sent out.

DR. NETON: And that's sort of my point I guess is, you know, we've got an input term here we're trying to wrestle with. I mean, was it 100 parts per billion, was it more than that.

But we're also--they blended this

1 this stuff -- it's a small fraction of the
2 total product being produced to begin with, so
3 it's assumed to take these pure numbers and
4 assume that the workers were exposed only --
5 essentially to recycled uranium is ludicrous.

7 in my own mind that we're -- we've very
8 conservative, at least by a factor of 10 for
999 percent of a worker population.

21 something here that doesn't ring true.
But I did know that there was a

1 special case with the tower ash, and it sounds
2 like there were other special cases. There
3 were a few special cases.
4
5 excursions that were known in his --

21 group to make their own judgments. Well, we 22 have nothing more to add.

21 You have to have some kind of value to use.
The other has to do with the mix of fission products and whether or not that mix is -- of fission products--which is really separate because they're not linked.

Am I correct that the plutonium composition of the uranium and the other radio nuclides are not necessarily linked because of the way in which the uranium was purified by different methods at different times?

CHAIRMAN CLAWSON: That's true but we have sort of a default mixture that is developed -- the fission product contaminants were not developed as a ratio to the amount of plutonium, I don't think.

DR. NETON: I don't hear Bryce saying.

DR. MAURO: I've been thinking that, to tell you the truth.

MR. RICH: That's -- that's true.
DR. NETON: So you're incorrect. It's not -- this much plutonium there for

1 assuming this much fission products.

DR. MAURO: And throughout --
MR. RICH: And, again, for the inner isotopes, other than the ones that were -- yes, the transuranics, we used the maximum levels that were allowed to be shipped to the plant.

MR. MAKHIJANI: And for the -and for the fission products?

MR. RICH: Those were the fission products.

DR. NETON: Again, you've got the question do they follow their own guidelines. I've taken the maximum value, meaning clearly there were shipments that were less than that, and we tried to bound them using whatever they could maximally allow.

MR. RICH: Most of them were less than that, but a considerable amount.

DR. NETON: Right. So we've got another level of conservative --

DR. MAURO: So what you're saying

1 is that it's very unlikely -- what I'm hearing
2 is that the argument is, you know, even though
3 our intent is to protect -- make sure that all
4 workers when we reconstruct doses that we feel
5 confident that we've -- have either a
6 realistic or a bounding estimate of what their
7 dose is, and the argument being that even
8 though there might have been some short
9 periods of time where you could have been
10 high, in the long term maybe you'll request a 11 year or more, it's unlikely that anyone's even 12 going to approach these concentrations of dose 13 periods. 21 in hazard level than the transuranics.

MEMBER ZIEMER: And especially
all of them all the time.
DR. MAURO: Especially all of
them all the time.
MR. RICH: And the other thing to
keep in mind too, the same products are probably about three orders of magnitude less

MEMBER ZIEMER: In terms of dose

1 per unit activity, Bryce --

5 most organs, not in every case but --

7 magnitude, you know, I've done these
8 calculations and they contribute very little
9 to the overall dose compared to things like 10 plutonium.

16 have nothing more to offer. Arjun, is there
17 any more?

19 know, we're kind of discussing the -- in

21 review in -- in ORAU NIOSH, and, you know, I
22 have nothing more. I mean, it's really to the

1 working group as to where we go from here.

21 in there that haven't been captured in this
CHAIRMAN CLAWSON: Well, I think -- I first of all have got to see what -- see a white paper that NIOSH is sending us in response to them before we can go on.

MEMBER ZIEMER: Well, I think we've heard the points. Maybe we have to formally close it out.

DR. MAURO: Yes.
MEMBER ZIEMER: It appears that the practical impact is going to be pretty small -- of these issues. I mean, I think these are some valid issues -- whether they impact.

But what is it we need to decide with respect to recycled uranium, whether or not NIOSH has effectively --

DR. NETON: I would offer that it
might be crucial to review the document that we submit. I mean, it might have some nuances discussion.

1
2 might bring to light some of the confusion one 3 way or another, because we saw this early on 4 about the recycled uranium back and forth like

5 that --
6
7 that there's any more actions, but I'd like to
8 look. I'm not ready to vote and say close.
9 I think we've -- I've got the arguments. I
10 want to see the paper --
CHAIRMAN CLAWSON: Well, and it

MEMBER GRIFFON: I don't think want

CHAIRMAN CLAWSON: That's fine.
MEMBER GRIFFON: -- and look at some of the background data a little more and maybe a few follow-up questions but no actions.

I mean, I still -- I'm going back
to that Paducah/Fernald stuff, and it's not only the fact that there was this range reported which is very wide, but it's also that -- and I couldn't find it but I'm pretty sure that the Paducah side of the -- of the House Sample of these same things and have

1 very different numbers than the Fernald side.

3 those -- DR. NETON: But again those --

MEMBER GRIFFON: I know.
DR. NETON: -- the 10 parts per
billion in process streams.
MEMBER GRIFFON: They're blended by someone, I imagine.

MR. ROLFES: Does it --
MEMBER GRIFFON: I guess in my mind -- I guess for me it also raises the question of well how solid are these other numbers that were assuming are accurate. Are they heterogeneous streams, are they -- you know, I don't know.

MR. ROLFES: It would only matter
when you get bioassay data to reconstruct intakes of plutonium.

MR. MAKHIJANI: A couple of things you might consider -- I mean, looking at all the stuff and hearing what Bryce has said and what's in process, I think there are

1 no data from the early period that I've seen
2 in terms of, you know, if the shipping site
3 was responsible for, say, we're within the
4 specifications and here are the measurements.
5 Here's what we did. Here's what's on the
6 barrel. It would be--presumably some
7 documentation was generated. Undoubtedly, it
8 was generated when there were inter-site
9 shipments, and it really would be useful to
10 have at least some kind of documentation.

The other thing that I think we didn't focus on. I just want to call your attention to it to see if you want to consider it and do anything about it.

If you look at the parts per billion data in the Ohio Field office report, a lot of them are surrogate data, that go into these average numbers that have been incorporated into the white paper.

Their data from other -- you know, we assume that this Paducah shipment was like this Oak Ridge, and if you look at the report

1 very large numbers of samples have -- the
2 identical--9.16, 0.2, 412.77--because they
3 have no data on those shipments.
4
Now I know we're looking at
5 surrogate data in a different circumstance,
6 but this is a real life practical example
7 where you've got a surrogate data question
8 that - at least I want to point out that it
9 is there, and it is pointed out.

11 follow what the numbers you were citing were,
12 Arjun.

14 at the Ohio Field office report, Mark, in
15 Appendix F where are a lot of these numbers
16 are developed and the boot strap analysis was
17 done and so on, you'll see that not every
18 stream with their numbers has its own
19 measurements, but it assumes that some streams
20 of recycled uranium are like some other
21 streams of recycled uranium for which there
22 are data, and I'll try to pull up an example.

2 elsewhere?

11 data issue is one where for the number to be 21 and where did this recycled uranium come from.

MEMBER ZIEMER: Streams from

MR. MAKHIJANI: Streams from elsewhere.

MEMBER SCHOFIELD: They're giving
them generic numbers?
MR. MAKHIJANI: Not generic
numbers, they're giving numbers from some known stream where it was measured.

MEMBER ZIEMER: And the surrogate accepted there has to be a fair bit of similarity between the processes including the operation, the masses--the process.

MR. MAKHIJANI: And one of the points I think to consider, the DOE exercise was a mass balance exercise. It wasn't a dose reconstruction exercise. It wasn't an exercise to see something has to be claimant favorable. It was, you know, what happened Do we have a grip on the order of magnitude of
the flow of the tranuranics.
MR. RICH: Arjun, could I just
correct you on one minor point there?
MR. MAKHIJANI: Sure.
MR. RICH: The mass balance
report was chartered with the objective of creating the data necessary to determine what the impact on the workers was. It was not specifically to do a dose reconstruction, I admit, but it was generated with the idea that it would provide the data to determine what the impact from a dose standpoint was on the workers.

CHAIRMAN CLAWSON: Well, I think that this is great, but I think I'd like to take just a 10-minute break right now, if that would be all right with everybody.

MEMBER ZIEMER: The action is
that we'll review the NIOSH white paper.
CHAIRMAN CLAWSON: Right, we're going to review the NIOSH white paper.

DR. NETON: We need to deliver

1 it.

MEMBER GRIFFON: I guess we
should have SC\&A formally look at that white paper, so when we say we --

MR. RICH: I might just add one more thing. We do have an OTIB 53 which deals with recycled uranium in a general sense throughout the complex. That's being held up right now, but --

DR. NETON: It's in review.
CHAIRMAN CLAWSON: Okay, could we just take about a 10-minute comfort break? Would that be all right?

MR. KATZ: All right, so about a quarter of we'll start back up. I'm going to put the phone on mute, but we're not breaking the line.
(Whereupon, the above-entitled matter went off the record at 3:35 p.m. and resumed at 3:50 p.m.)

MR. KATZ: Folks on the phone, this is Ted Katz again with The Advisory Board

1 on Radiation and Worker Health, Fernald
2 Workgroup, and we're just starting back up
3 after a brief break.
CHAIRMAN CLAWSON: I guess first
5 of all I just wanted to clarify that at the
6 conclusion of our last conversations we were
7 going to have SC\&A review the NIOSH white
8 paper that's coming out on the recycled
9 uranium issue. Was there any other thing that
10 we had, Paul, or that was it; wasn't it? 21 cleared, dated November 25, 2008. Hans

Okay, and I'll turn the -- John, we've got a couple of them here. Which one did we want to go to next?

DR. MAURO: Yes, well, we've got
two, and it would be nice if we could do each within about 20 minutes to a half hour. And the two subjects we have left are -- one has to do with the radon releases from the silos. In a nutshell, we wrote a white paper that everyone should have, but it has not been PA Behling did the work. The bottom line is

1 we're coming up with sources, radon emissions
2 from the silos, that are 60,000 to 90,000
3 curies per year. NIOSH and their folks have
4 recently issued a critique of our work dated
5 February 2009 by Sam Chu, who disagrees with
6 us and gives his reasons.

8 with him. We think our numbers are right and
9 NIOSH's numbers are wrong, and Hans Behling will explain why, but before we do that, I just want to let you know we also have John Stiver with us today. John is a CHP with us and joined our organization about --

MR. STIVER: About six weeks ago.
DR. MAURO: -- about six weeks ago. And John -- I asked John to look into this -- by the way, both the subjects we are going to cover were authorized by the last work group meeting, namely they asked us at that time -- from the last meeting -- Hans gave a brief description of work he did, and we were asked to make it a formal white paper,

1 which is exactly what this document is.

3 do is to look into the Thorium-232 DWE, daily
4 weighted exposure data, and the breathing zone
5 data, general air sampling data that's going
6 to be used by NIOSH to reconstruct inhalation
7 exposures to Thorium-232. We are -- we
8 haven't prepared a report; however, John has
9 done a lot of work in looking at the landscape
10 of the data, the records, what do they look
11 like, and he has a number of talking points
12 and handouts just to give you a briefing of
13 the status of our investigations into that 14 matter.

18 hear me?

21 K-65 silos, an SC\&A white paper. The cover
With that, I'd like to turn it
over to Hans. Hans, are you on the line?
DR. BEHLING: Yes, I am. Can you

DR. MAURO: It's called an alternative assessment of radon releases from page says November 2008 on it. The actual

1 footer, though, gives a specific date of
2 November 25, 2008. This document of course 3 went through DOE clearance, but it has not yet

4 been PA cleared. It is in the process of
5 being PA cleared.

6
7
8
9 issues. This really refers to -- this report 10 reflects Finding Number 4.2-3, which was a

11 finding that we identified as part of our 12 review of the SEC petition, and of course, 13 NIOSH's evaluation report.

Hans, it's all yours.
DR. BEHLING: Okay. Again, I'll just quickly go through a couple of historical

In that petition -- in that review of our petition, we processed the assessment of the radon emissions from silos one and two, which were estimated at 5,000, 6,000 curies per year, might have been less than what we thought it should be.

And as part of our review, I concluded that perhaps as much as 60 to 90,000 curies per year might be the appropriate

1 value, and as a result of that finding, it was
2 the work group who had asked SC\&A to go back
3 and support that revised estimate, and this is
4 what this particular report is trying to do 5 here.

Most of -- in fact, the -- the
7 estimate of 5,000 to 6,000 curies per year for
8 radon releases that was defined in the site
9 profile for Fernald are really values that
10 were derived from a 1995 report issued by John
11 Till, the RAC Report. And it was really not
12 NIOSH's calculation, but it was a reference to
13 an early 1995 report by John Till that
14 identified that particular number.

21 those of you who are in a position to actually
22
One of the things that -- for look at the hard copy of the report, either

1 hard copy or on the computer screen, I would
2 ask you to turn to page three, which contains
3 Table One in my report, and the title of that
4 report is Summary of Historical Changes to the
5 K-65 storage silos.
6 And again, this comes from
7 Appendix J of the RAC 1995 Report. And
8 there's a couple of dates that I want you to
9 keep in mind. From the very beginning, there 10 was construction defects in those silos, and 11 everyone knew about it, and over a period of 12 time they attempted to make corrections. But 13 the major correction occurred, if you look at 14 Table One, at the end of June of 1979 where 15 the openings in silo domes, including the 16 gooseneck pipes and other penetrations, were 17 sealed with gaskets and installed to prevent 18 radon emissions.

21 or date that I want you to recall -- remember

1 it was installed in 1987. And the purpose of
2 that radon treatment system I will explain a
3 little later on, but for the moment it was
4 there to basically vent the head space in the
5 silos from radon, and reduce the dose rates on
6 top of the dome so that workers could work
7 there, and an acceptable dose rate would
8 result from having vented the head space.
And of course in 1991 there was
some measurements taken from the matrix of the raffinates, and that's the thing that I'm going to talk about next. I'm going to refer you to Table Two in my report. That occurs on page seven.

And the key thing that you need to understand is the disequilibrium between

Radon-226 and Lead-210. If you look at Table Two, and this is a 1991 sampling that was done, and you will see a whole series of rows that go from left to right, and in the second column you will see the zone, and the zones represent the depth of the raffinate matrix.

1
2 that's very near the top, if you're looking at
3 B that's sort of in the middle, and C is
4 towards the bottom.

6 short, if you look at the actual value of the
7 mean for silo number one, and I highlighted or
8 I enclosed the columns for Lead-210 and Radon-
9 226, you will see for Lead-210 the average
10 value, the mean value was 194,000 versus
11525,000 , and that gives you an equilibrium

21 summary fashion in table four on page six, and
If you're looking at Level A,

But for the moment, to keep things ratio of 37 percent -- or ratio of 37 percent, which clearly says that we're not in equilibrium.

The same thing for silo number
two. If you look at the bottom, you will see 123,000 versus 209,000 , and that is also a 38 percent level of equilibrium between those two radionuclides.

Those values are again repeated in as well as on table five is some additional

1 data from 1993 which tends in part to support
2 the earlier '91 data, with the exception that 3 silo two has a much higher value. As you can

4 see there, we go from 0.38 ratio to 0.72 . And
5 I'm not sure I know how to account for that
6 difference, but clearly the two sampling data
7 sets were somewhat different. I'm not sure
8 that's the '95 data set which was done on the
9 stratum level. That was done at an earlier 10 time.

14 and five.

21 who might be on the phone who don't have
MEMBER ZIEMER: Hans, what table was that in?

DR. BEHLING: This is table four

MEMBER ZIEMER: Okay, got you.
MR. STIVER: Bottom of page six.
DR. BEHLING: Okay, so as I mentioned before, the reference in the NIOSH site profile for Fernald in section 5.2.4, I'm going to read a quotation so that for people access to either the hard copy or the computer

1 screen, I will read something that's very
2 important.

4 the following. "As previously stated, the
5 contents of the silos have not been disturbed
6 during the storage to any large degree;
7 however, it's been calculated that during the
81953 to 1958 period, 5,000 to 6,000 curies per
9 year of radon were released from the silos."
10 And they reference the 1995 RAC Report.

21 co-authors used was really a complex model.
In the site profile, NIOSH states
"Considering the expected large difference in release rates due to barometric pressure changes, release rates would average up to 15 to 20 curies per day after the addition of the silos were complete."

Anyway, what I wanted to simply
emphasize here again is that these values were not NIOSH's values, but they were adopted from the 1995 RAC Report.

The model that John Till and his It was based on a diffusion kinetics of radon

1 to waste package to head space ventilation
2 barometric pressure, and a lot of modeling
3 data that had to make numerous assumptions
4 regarding what could have been released.
5 And if you go further down the
6 page, you will see some of his own concerns
7 that he expressed in the report, but I won't
8 for the sake of time deal with those issues.
9 But let me go to page number eight, and near the top of the page, I have a title section from Page J-28 of Appendix J, and that's a reference to the John Till report of 1995, and I'll read that again for the benefit of people who may not have access to the report.

In that report, John Till says the following. The silo interior was sampled on November 4, 1987, prior to the operation of the Radon Treatment System -- and parentheses RTS, because I'm going to refer to RTS -- and prior to the application of the exterior formerly to the silo domes. And the RTS is a system that pumps air from the silos through

1 a series of calcium sulfate and charcoal beds,
2 which removes Radon-222, enough potential
3 daughter products of Radon-222, from the air
4 space of the silos and reduces the direct
5 radiation exposure rate on the silo domes.
6 The system is used to reduce radiation
7 exposures to personnel involved on the silos.

In other words, you were sending workers up on top of the silos, the exterior of the silos, and the intent of the radiation -- Radon Treatment System is to vent the head space and in the process reduce the dose rate because of the fact that you're removing the radon and its daughters.

Furthermore, I'm also going to quote a couple of other statements here.

Searches through the historical records of the FMC have located some results of radiation exposure rates on top of the K-65 silo domes which are summarized in Table J-19, and that table I exclude as Exhibit Number One.

And let me ask those who have a

1 copy of the report to turn to page 10, which
2 is -- comes directly -- it's a verbatim
3 replication of the table J-19 from the report
4 that John Till issued in '95. And you will
5 see for the sake of, again, simplicity I have
6 identified by hour certain dates.
The top of the table involves
dates. The first one is April 1964. The second one is '72. There are two of them in March '72, and then there's May '73, and a couple of other ones in May '72 and July '73. Important to note here is the fact that these measurements were taken prior to 1979 when there was corrective measures taken to seal the dome that is a gooseneck and the manhole covers, et cetera. And important to note here are the -- is the column that contains the measurements of dose rates in milliR per hour. So you'll see on April 1964, 75 millirem per hour, and on March 1972, below that is 30 and so forth and so forth. And on the far right side you will

1 see some statements with regard to the average
2 values which defines those particular
3 measurements. You will see, for instance, in
4 the case of -- let's see, no, they don't on
5 this one.

7 rate measurements. Some were as low as 30 mR
8 per hour to as high as 90 with an average
9 somewhere in the sixties to seventy milliR per
10 hour. That's an important number to remember. series of columns you'll have dates after the ceiling silo opening, and we'll skip the majority of them until you get down to the bottom where you have two more arrows identifying two particular dates. The first one is from the fourth from the bottom up, November 1987. Again, you have a contact reading, and that contact reading is 168 to 208 milliRs per hour, and the average was 193. On that same date they start out -

- they start with the Radon Treatment System,

1 which I will go back in a few seconds and
2 explain what the technical specifications are.

4 you to the page eight on the bottom, which
5 explains that the RT system was operated on
6 one silo at a time with a flow rate of a
7 thousand cubic feet per minute and was
8 operated until the radiation level on top of
9 the silo dome surface contact stopped
10 decreasing, and that usually meant several
11 hours.

18 initial concentration. Thus, for this
19 analysis the exposure rate measurements made 20 after the operation of the RTS are considered

21 to represent the quote background exposure
And then it goes on to say the following. "With these flow rate and operating times and an assumed removal efficiency close to 100 percent of the radon concentrations in the silo air space should have reduced to less than three percent of the rate in the absence of radon daughters in the

1 silo air."

3 Exhibit 1 on page 10 and look at the contact
4 reading after the RTS was in operation, and
5 you see for November 1987 the contact reading
6 was reduced from an average of 193 to 35.5 to 7 68, with an average of 55 milliR per hour.

9 below on November 1987 and, again, the
10 baseline reading before the RTS varied between
11221 to 250 MR per hour, with an average of
230. Once you activated the RTS system, that was reduced to 68.

Now you look at those particular measurements after the RTS that assumedly cleared in excess of 97 percent of the radon out of the head space, and you will come to the conclusion that pre-1980 when the -- the gooseneck and the other penetrations were still open and actively venting that the dose rates on top of the dome pre-1980 was essentially nearly identical to the dose rates

1 that you would experience after the activation
2 of the RTS system, meaning that you have
3 vented essentially all of the radon and the
4 daughters from the head space.

6 in essence prior to the serious attempt to
7 finally seal the domes of Silos One and Two,
8 the ventilation rates from those domes through
9 whatever penetration that the goosenecks, the manhole covers essentially was equivalent in efficiency in removing the radon gas as the RTS that has at least as a specification designed to clear the head space volume of air at a thousand cubic feet per minute and was operated until essentially there was no further reduction in the dose rate on top of the dome.

Now if you go to Exhibit Two, it basically depicts the numbers that I just talked to you, on page 11 you will see the exposure rate in milliR per hour and a -- you have several data points prior to 1979 -- June

1 of 1979, and you see that the dose rate among
2 those -- those lower on the left hand side
3 oscillates somewhere between 60 to maybe 75
4 millirem per hour, and at that very moment in
5 time when that modification was done to Silos
6 One and Two you see a rapid acceleration in
7 terms of dose rate that the highest reading
8 was close to 400 milliR per hour.

Now on that basis, I concluded that obviously the silos must have vented most of the radon that escaped from the waste package from the raffinate waste package into the head space and was vented into the

Now the big question that I had to deal with is what do we do as a starting point. Obviously, as a starting point the equilibrium between Radium-226 and Radon-222 could have been anything basically as an upper limit and lower limit from zero up to 100 percent equilibrium. And for that reason, not knowing the data and not having any

1 information as to what the ratio between those
2 two radionuclides are at time of emplacement,
3 I consulted a couple of documents from the
4 scientific literature which are supplied to
5 you as Appendix -- let me see, as Attachment
6 One. It's an article by Claude W. Sill, and
7 if you had a chance to read it there were
8 measurements taken both of mined ore, uranium
9 ore, as well as mill tailings.

11 ore and mill tailings the ratio between -- if
12 you go to page 27 of my report, you will see
13 a column of Radium-226 and Lead-210 as ratios
14 to the parent uranium. They're basically
15 identical. So at least in ore you see the
16 ratio between radium and Lead-210, essentially
17 at unity. They're essentially at equilibrium.

19 doesn't count, but let's go to uranium mill
20 tailings, and I think I summarized that
21 actually in the report on page 13. If you
22

1 had several different samples to choose from -
2 - one from a single mill, the other one was a
3 composite of 16 mills. In the single mill
4 tailings, the ratio between Lead-210 and the
5 Radium-226 -- there's a typo there, it's 226 -
6 - was 90 percent. For the composite of 16
7 mills the ratio was 87 percent. So I wasn't
8 really quite certain as to what to do about
9 estimating or making assumptions of a starting
10 point, but what I did do was to essentially
11 assume that the disequilibrium that we saw in
121991 when there were core samples taken out of
13 Silos One and Two, that level of
14 disequilibrium existed at the time of
15 emplacement, which I consider as relatively
16 unconservative that I might have ended up with
17 a significantly higher ventilation rate than
18 I ended up assuming.

21 emplacement continued throughout the entire
And I assume that that
disequilibrium that existed at the time of period up to 1979, June of 1979, when the

1 modification took place. And on that basis I
2 came up with my numbers which I can just
3 summarize, but I concluded that somewhere in
4 excess of 100,000 curies per year between
5 Silos One and Two may have been ventilated per
6 year between the time of emplacement and the
7 time of the modifications in June of 1979.
8 So for the sake of brevity I'm not
9 going to continue adding more of the details,
10 but if you have the report you can certainly
11 look at some of the additional information
12 that I've included that would support the
13 notion that the 5,000 curies that were
14 initially estimated by John Till in his 1995
15 RAC Report may have significantly
16 underestimated the release, which I estimate
17 to be in excess of 100,000 for both Silos One 18 and Two.

21 February 2000 report by Sam Chu, and basically
DR. MAURO: I'd like to add one
last thing. We did review this -- the what Sam argues is that, no, the diffusion

1 calculation, the transport contained error,
2 which is a transport calculation where you
3 know the temperature difference, and you could 4 model diffusion.

Argues that that's a very reliable
6 way to predict source terms. It's basically
7 to develop reactors, but the reality is, as
8 Hans pointed out, it's filled with lots of
9 assumptions regarding the diffusion
10 coefficients, crack size, delta T. There's
11 a whole litany of assumptions you have to 12 make.

14 that were derived originally by RAC, and we 15 got 6,000. In other words so if you were to 16 use the RAC or John Till approach, we would 17 get 6,000, but we think that that's a very 18 indirect way of trying to get a handle on the 19 source term. We think Hans's approach, which 20 is based on the deficit of the progeny

21 compared to the radium, coupled with the fact 22 We checked those numbers, that is that there's good evidence that the -- there

1 really, there was no radon and radon progeny
2 inventory in the head space meant that the
3 radon left, and that the real number is
4 probably more like 60,000 curies per year, so 5 we hold to our position.

7 this is not an SEC issue. What we believe is
8 that the estimate of the radon release rate
9 and associated doses has been underestimated

21 review of that dose reconstruction.
So a committee of the National

1 Academy of Sciences convened, reviewed that
2 dose reconstruction in 1977, and in the
3 opinion of the committee the RAC approach was
4 considered to be -- I forget their exact words
5 -- the committee concludes that the methods
6 used in the Fernald dose reconstruction
7 project are appropriate and scientifically
8 sound. Furthermore, they went on to say, in
9 the opinion of the committee the RAC approach
10 has resulted in an overestimation of doses to
11 people exposed to radon. So here we have
12 somewhat of a difference of opinions.

DR. MAURO: Yes, we do.
DR. NETON: And we have one expert opinion that has confirmed the RAC approach, the National Academy of Sciences review. I have to say I'd like to go back and look at Hans's analysis. I mean, I respect Hans, and I need to look at his analysis again.

DR. BEHLING: And let me just
finish off. I really try to avoid models if

1 I can, and to me those particular data points
2 regarding dose rates on top of the dome that's
3 involved pre-1979 measurements and then, of
4 course, the use of the radon treatment system
5 on and before it is activated tell me an awful
6 lot of information that transcends non-
7 empirical model data that, for instance, John 8 Till used.

And if, in fact, the radon
10 treatment system that was venting the head
11 space at 1,000 cubic feet per minute was
12 operating for several hours with a ventilation 13 rate of 1.2 ventilation volumes per hour, what 14 does that tell you about the fact that those 15 dose rate measurements in earlier years, pre16 '79, were essentially identical to the

17 measurements after the RTS was activated until
18 the dose rate no longer dropped.

21 data, even if it involves such noble people as
To me that pretty much tells me more than somebody's opinion about the RAC the National Academy of Science. All they did

1 was look at what we did when we looked at the
2 RAC report, and John just finished telling you
3 we looked at the data and said, hey, you know,
4 if this is all you've got you may have to
5 concur with the conclusion that it was five to
6 six thousand curies per year. But maybe they
7 should look at the Appendix J of the RAC
8 report and then identify the various numbers
9 that I identified and then determine whether or not you still feel that the RAC report has in its original form a more credible data. DR. NETON: There also occurs to me that there was a recent analysis done by the University of Cincinnati, funded by NIOSH, by the way, that went and reconstructed the dose for all -- all workers at Fernald, I think over all -- not all time but through a certain time period, starting I think at the beginning of the entombment of the K-65 material. And my recollection was that they developed yet another diffusion model. I'm not sure how much it relied as a starting

1 point on the RAC data, but I'd like to go back
2 and look at that, as well.
So there's some issues on the
4 table here. I have some concerns about the --
5 the diffusion -- how deep a pile of material
6 this way and Hans's assumption about emanation
7 rates and uniformity of that, and all kinds of
8 concerns like that that I think need to be
9 really looked at in some detail.

I respect Hans. He's an excellent scientist, but I think so far it's not passing the peer review process, and I'll go back and look at it myself.

MEMBER ZIEMER: Hans, this is
Ziemer. I have a question, too, maybe you can help me clarify. In going through your calculations around page 15 and so on where you started with the inventory of radium, did that come from the total inventory in the silos?

> DR. BEHLING: Yes, it came
basically from the curie content of Radium-
1226.

4 that you're assuming that all of the radium or
5 all of the radon atoms generated by the decay 6 of radium actually are vented?

9 about 38 to 40 percent that remain. I'm not 10 saying no. I did not say 100 percent, but the

11 fact that in 1991, which is approximately 40
12 years after the emplacement of the raffinate

21 years, you would have had two half-lives of in
MEMBER ZIEMER: Okay, so that's what I thought you had done, so it appears

DR. BEHLING: Well, not quite. As I said there is obviously the ratio of waste you still only have a 40 percent ratio between Lead-210 and Radium-226.

Now Lead-210 has a half-life of 21 years and in essence if -- let's assume for a moment that the -- all of the radon remains in the waste package and decayed and gave rise to a starting point that had zero Lead-210. After 40 years, in 1991 we're talking about 40 growth, meaning you would have had at least 75

1 percent.

3 to have escaped. There's no question around
4 that, and the question now is if it escaped
5 the waste package and ended up in the head
6 space, what happened to it? And this is where
7 I believe the second issue comes into play
8 with regard to the data that was reported in
9 Appendix J.

21 environment?
And so you realize that radon has

It's clear that the radon left the waste package or the matrix of the raffinate waste. If it enters the head space, what happened to it? And if the dose rates pre1979 and post-'79 with the RTS system are essentially identical, you almost have little or no choice but to conclude that that radon had to have escaped.

MR. MORRIS: So essentially
you're saying that 97 percent of the radon entering the head space was released to the

DR. BEHLING: Well, those are the

1 two data points that I rely on, and I believe
2 that's the conclusion that you almost have to
3 come to. My discussion about the Venturi
4 effect does not to explain these numbers. It
5 just explains the possibility by which an
6 enhanced release rates could have occurred.
7 When you have a dome that is basically an
8 airplane or an asymmetrical foil, it's subject
9 to the Venturi effect and may have created a
10 significant vacuum in the head space that
11 basically was the means by which it escaped, 12 even through modest penetrations.

MR. MORRIS: Excuse me, Brad?
Are you interested now in getting this summary of what Sam Chu reported in his paper in rebuttal or is that -- I don't know what you want to do.

CHAIRMAN CLAWSON: If you're good, Jim also said he'd been a while and he'd like to --

DR. NETON: I'd like to -- I
mean, John characterized it as essentially

1 saying that it's definitely -- he bought off
2 on the RAC assumption. I think that's what
3 John characterized the Sam Chu report.

4

5 if we run the model -- no, no, no. We don't
6 accept -- we don't believe this is the way to
7 do it. We think --

21 okay, we'll start with the beginning
22 assumption of the amount of radon that reached

1 the head space that Hans took, but that's not
2 the end of the story. There are barriers to
3 the radon getting out of that head space and
4 into the environment.

6 a moment you'll think oh, yes, there are
7 barriers. There is the matrix of the waste,
8 and then there is the dome. I mean, that's
9 why there is a dose rate there on the top 10 because it actually impedes the flow of the 11 radon.

So Sam went through -- let me see if I can get to my highlighted sections here. So missing from that assessment that Hans just described is the amount of radon released to the environment from the head space -- has to consider that containment capability of the silo, the retention time of the radon in the head space, and the depletion of the radon in the head space due to radioactive decay.

The assessment really doesn't take into affect -- into account the amount of

1 radon released to the environment that was
2 driven by the daily temperature differentials,
3 the Venturi effect of prevailing wind speeds,
4 the retention time of radon, and the
5 depletion. Fundamentally, radon is heavier
6 than air and consequently will tend to be in
7 the bottom of the head space just by nature
8 unless it is stirred up with some mechanical
9 force that's moving it up. There were
10 openings in the top of the dome and cracks
11 also. There was a six-inch gooseneck pipe
12 bend, the gaps between the manholes and the 13 manhole covers, and so collectively you can 14 begin to describe these as leak paths.

A leak path factor is the ratio of what's released to what's contained, and there is a computer code that the NRC uses called CONTAIN. CONTAIN 2.0 is the version that's out now. It's a generalized mass transport and thermal-hydraulics computer code, and it was developed to predict the thermal-hydraulic response inside a nuclear reactor, but it's

1 sufficiently versatile to take any set of
2 pressure or temperature-driven flows and the
3 cells which would be the components of the
4 waste, sort of the layer cake waste, and then
5 the head space is a cell, and then the release
6 portion and actually do a predicted model that
7 -- that can define, based on these mechanical
8 and physical properties that can be measured
9 or assumed easily, the amount of flow that 10 could happen.

And so, you know, Sam goes ahead to show the equations and then implements the -- the calculation with the contained code. The bottom line is that the numbers really do not change very much from where we left it in the Technical Basis Document, so we're content with saying that we can validate by this modeling and the assumptions that Hans begins with -- provides us to begin with a rationale for having exactly the same position that we left in the Technical Basis Document.

MEMBER ZIEMER: So you end up in

1 your analysis with something which you might
2 call a resident time of the radon in the head 3 space?

4

6 what? Do you know what that --

8 want --

18 100,000 versus -- here, 30,000, is it a factor
19 of two or three?

21 Technical Basis Document has 6,000 curies per
22 year, and the white paper that we produced

1 actually has 660 curies being vented, so this
2 model, the CONTAIN calculations that we
3 presented in the white paper here have
4 essentially another order of magnitude lower
5 than what we have in our current approved
6 Technical Basis Document. 8 need several effective half lives if you want

9 to think of it that way.
MR. ROLFES: And basically these
11 are -- these are orifice-driven flows.

MEMBER ZIEMER: Okay. So you

MEMBER ZIEMER: Yes, I understand.

MR. ROLFES: And so, you know, you just can't instantly have everything come out.

MEMBER ZIEMER: No, no.
DR. BEHLING: I guess I have a question as to why you would explain or how you can explain the quantum leap in the reduction in dose rates following the RTS that reduces the dose rate on top of the dome to

1 levels that essentially are pre-'79, and you
2 can reasonably assume that that is the result
3 of having vented after several hours, and most
4 of the radon daughters are short-lived radon
5 daughters with half-lives of microseconds to
6 up to twenty-some minutes. And if you run the
7 RTS for a period of three hours you basically
8 blast out all of the radon and the short-lived
9 radon daughters which result in a massive
10 reduction in the dose rate, and as far as I'm
11 concerned the post-1987 RTS values are
12 essentially similar to the pre-1979
13 modifications to the dome. And to me those
14 numbers speak everything I need to know.

21 believe if you can essentially pump and keep
DR. NETON: I'm confused, Hans.
You're saying that by virtue of the fact that they can pump the short-lived progeny out of the dome and reduce the dose rates, that plays into your hand?

DR. BEHLING: Well, yes. I the radon system on indefinitely, meaning that

1 there is no build-up of radon in the head
2 space and you end up with a dose rate that is
3 the same as the dose rate before the RTS
4 before the dome was modified --

6 you know, the emanation rate coming out of the
7 material is pretty low, and once you pump it
8 out of the head space you've removed the
9 source term.
DR. BEHLING: The same thing with -- if you have natural ventilation --

DR. MAURO: You wouldn't have a deficit. You can't have it both ways.

DR. NETON: I suspect that there's a lot of plate-out of this material on the dome itself. Radon has a very large affinity for -- it's born charged. Radon progeny are born ionized to some degree. There's a charge on those particles, and, in fact, in an indoor environment the equilibrium ratio is only around, what, 30 percent because they attach to the surfaces of the material in

1 the area that they're born.

3 in the dome pre-1979, why is the dose rate 30
4 to 60 millirem per hour? That means that it's
5 not there. The dose rate on the top of the
6 dome before 1979 is low. It means that you
7 don't have this inventory sitting up there
8 inside this dome space. The radon isn't
9 there. And the fact that after they sealed it
10 -- in fact, if what you're saying is true you
11 would have expected to see 200, 250 MR per
12 hour pre-1979 because it would be trapped in 13 there, giving you this high dose rate, and you 14 don't see that.

DR. NETON: Well, didn't they
also put a cap on top of the silo material
itself? There was a massive cover -- a bentonite clay cap on top of the silo to prevent the migration --

MEMBER ZIEMER: That was later.
DR. NETON: That was in the
1980s.

1
2
3 campaigns to put a cap on the inner material
4 to prevent exactly what Hans is talking about,
5 the migration of material out of the -- out of
6 the silos.

7

8
9 screaming at you. When you turn on that vent,
10 you drop right back down. After you turn on
11 the vent you enter the head space of radon

22
DR. MAURO: We have to talk to -DR. NETON: There were several

DR. MAURO: Look at the '87. I
mean, the numbers are -- I mean, it's using the vent system, you're right back down to the 35 MR per hour, which is what you have before 1979.

DR. NETON: And how long did it take to build back up?

DR. MAURO: The next reading, it doesn't take long.

DR. BEHLING: Well, you can look at that if you look at, again --

DR. MAURO: The graph will tell you.

1

2 not going to solve it here.

4 listen, I mean, I look at this and I say the
5 common sense argument -- this is really what
6 we have here is Hans brought to the table a
7 common sense argument that really directly
8 contradicts the sophisticated transport
9 equation calculation. The two are 10 incompatible. The numbers we're looking at in

11 Exhibit One and the model -- something's 12 wrong, and quite frankly I had much sooner 13 trust the empirical data than I would these

14 transfer models.
DR. NETON: Okay, we're probably

DR. MAURO: I know, but I mean --

MR. MORRIS: But in terms of common sense, it doesn't make common sense to assume that the silo did nothing to impede the flow of radon.

DR. MAURO: Why would you say that?

MR. MORRIS: It makes no common sense to assume that none of these hold-up

1 factors were in play.

5 may accumulate radon. You can -- and I've
6 done this before because my house suffered.
7 I lived in the radon prone area. If you use
8 a toxic paint and you seal all but the most
9 smallest of cracks, you have done nothing.
DR. BEHLING: Well, let me shed some light on the issue that simulates the dome to a floor in a basement under which you I lived in the radon prone area. If you use The infiltration remains the same. It isn't until you introduce a ventilation, a sub-slab ventilation that you actually then do something constructive. So it doesn't take much of a perforation to vent most of the material if you have a negative pressure inside your basement compared to the pressure underneath your slab.

So I do believe that you don't need to have huge, huge gaps of cracks. A few major cracks, a gooseneck, and a few other things under the condition of a Venturi effect can essentially serve to vent the head space

1 fairly efficiently to the level where you see
2 dose rates that pre-1979 are equivalent to the
3 ventilation rates and the reduction in dose
4 rates with the RTS system.
DR. NETON: Well, again, we need
6 to take a look at this, but I agree with John
7 that this is not necessarily an SEC issue.
8 It's a novel analysis of an issue that has
9 been reviewed by the National Academy of
10 Sciences, which I tend to trust, but we need
11 to look at it in light of this new concept.

MEMBER GRIFFON: Before we --
MEMBER ZIEMER: NIOSH is going to review this.

1
2 a review. We'd appreciate SC\&A to respond to 3 it.

5 response is very straightforward. We don't
6 believe running -- is that contained air or
7 contained --

8

9

DR. NETON: Well, we already have

DR. MAURO: No, no, no. Our
\square
DR. NETON: Contained.
DR. MAURO: -- a transport code
that makes certain assumptions -- diffusion coefficients, average your differences is the way to come at this problem when you've got data like this. You know, what are you going to trust, and really this becomes a matter of scientific judgment. Do you trust -- you know, the barriers that you're talking about it, it's very difficult to contain radon.

MEMBER ZIEMER: Let me ask a question regardless of which number's right. How are you using -- remind me of how you're using the radon information that's vented from the silos.

1

2

MR. ROLFES: Basically, we -- the way we would reconstruct an individual's radon intakes, we're assigning default values based on the site profile.

MEMBER ZIEMER: Down wind or are they location specific?

MR. MORRIS: They're location
specific. In the environmental.
MEMBER GRIFFON: In the
environmental, and then, I mean, that's what I want to get back to. This part, I think, I actually agree with this that this side of it is a site profile deal. The question that I'm not sure is -- might remain an SEC question is how is dose assigned, you know?

MR. ROLFES: Exactly. I guess
exactly how this affects claims, you know, we can take a look at some of the perimeter radon air monitoring data and other track-etch detector data that we have.

MEMBER ZIEMER: Are you seeing significant lung doses to people in the

1 environment from the radon?

9 compared --

MR. ROLFES: Yes, but the K-65
silos aren't necessarily the sole source. It's more people working with Q-11 in process.

MEMBER ZIEMER: I'm really asking you what is this contributing to the big picture, or is it too early to say?

DR. NETON: It's pretty small

MEMBER ZIEMER: That's what I was

DR. NETON: I mean, we've -- 90 plus percent of the lung cancers in -respiratory track program are compensated. So there's a large dosage associated with a missed dose associated with uranium intakes, thorium intakes, thoron in the building, radon in the building. It's sort of an environmental issue where how much radon could be wafting outside from the K - 65 silos is an environmental TBD issue that we would use to assign to people who were not necessarily

1 production-type workers.

3 question here, and I'm going back to the
4 matrix, believe it or not, at a quarter of
5 five. I mean, I was, while Hans was
6 presenting there, I was flagging some old --
7 going through and looking at the old actions
8 that we might have forgotten about, but for
$9 \quad 4.2-1$ this is that question that, Mark, I
10 think you just alluded to is NIOSH is supposed
11 to further evaluate the ability to reconstruct 12 doses from raffinate specifically for workers 13 exposed to materials from Silo Three. And 14 then updating -- there's another one, NIOSH is 15 updating Technical Basis Document to consider 16 the Pinney radon study. That gets into the Q-
DR. NETON: That's correct.

That's a separate issue, but Hans's analysis

1 would -- that's actually contradicted in the
2 RAC study, the Pinney Study, and other studies
3 that we've been using.
4 MEMBER GRIFFON: No, I understand
5 that, but this part of it, this dose
6 assignment part of it to me is not necessarily
7 just a site profile issue. I mean, how are
8 you going to determine who was in what areas
9 and how are you going to decide who gets what
10 doses. That's that age-old question.
DR. NETON: I need to talk with
our group here.
MEMBER GRIFFON: I'm just keeping
14 that action on the table.

16 that there is a Pinney study out there that
17 has reconstructed a dose for all workers based

21 the action. That's all I'm saying is that --
22 on some default values --

MEMBER GRIFFON: I'm very
familiar with it. I just don't want to lose it sounds like we're closing it out kind of as

1 a site profile issue, and I'm saying for that
2 side of it, I don't disagree.

5 profile issue.

7 profile issue, right. I agree with that, but
8 the other side --

11 want to keep it on the table. That's all.
12 Okay, I'm just reminding us that it's out

21 off because there's several of them that we 22 haven't discussed, and they're kind of getting

1 lost in the weeds a little bit. And I want to
2 make sure that we close them out because, you
3 know, the petitioner's watching us and, you
4 know, we have to be responsive to them.

6 lower -- before you take off real quick, we're
7 going to lower our intellectual level way down
8 here. I'm trying to understand something
9 here, and I apologize for my ignorance.
But pre-1979 we were really
maintaining a 50 MR off the top of the silos, and after they sealed it all of a sudden we're going to 250 to -- to as high as what I see as 400.

And, Hans, correct me if I'm
wrong. What -- what you're saying is -- is this is showing what could have been possibly venting out of the K-65 silo previous before sealing it?

MEMBER ZIEMER: Right.
DR. BEHLING: Yes, the truth --
CHAIRMAN CLAWSON: How much

1 activity is going on, so really what we're
2 doing is when we're pumping all that head
3 space down we're basically seeing the
4 radiation that's being given off by the -- the
5 actual product that's inside?
DR. BEHLING: Well, yes, you
obviously have radon activity in the raffinates, and that is your -- as was stated -- let me see here -- in one of the things that I quoted.

On page -- top of nine the
statement -- and this comes from, again, the RAC report: "Thus, for this analysis the exposure rate measurements made after operation of the RTS are considered to represent the background exposure rate in the absence of radon daughters in the silo air."

What basically, I was saying,
we're looking at is this. If, for instance, you had a -- the RTS system operating for an indefinite period of time, not just for a few hours so that workers could go up, but based

1 on the fact that as the statement says they
2 would run the RTS until there was no further
3 reduction in the dose rate.
4
5 assure yourself of is that there was no
6 additional build up of radon in the head
7 space, and if at that point you had a dose
8 rate measurement of 65 or 70 milliR per hour
9 and then realized that pre-1979 you had no RTS
10 but it was a continuous ventilation system and
11 the dose rate never went much above the 65 to

So you, in essence, have to come to the realization that pre-'79 the ventilation rate was basically in a de facto RTS system.

> CHAIRMAN CLAWSON: Okay, I just
wanted to make sure that I understood what you were saying. I appreciate that, so basically the action item that we're going to have is that NIOSH is going to --

DR. NETON: We've looked at it.

1 It's been determined that this particular
2 issue rated by SC\&A is a site profile issue,
3 so in light of the fact that this SEC
4 evaluation's been in process for over two
5 years now, I think we've put that on the back
6 burner at this point.

9 and we'll get to it, but we've got a lot of 10 other more pressing issues to resolve from the

11 SEC perspective at this point than to burden 12 to SEC review process with this.

I mean, contrary to what I said I'd still like to intellectually look at it -

CHAIRMAN CLAWSON: And I
understand that, but like we said on the matrix here it does actually get back to the

> DR. NETON: There is a radon
reconstruction issue that is related but not directly related to Hans's. If Hans is correct and SC\&A is correct, it would be a scaling factor that could be applied to all the radon doses that we assign on the site. compensated.

The question is can we actually
figure out who to assign radon to, and if we use six curies or 60 curies, it doesn't matter. It's a scaling factor.

DR. MAURO: The issue remains --
DR. NETON: The issue remains, but it's not -- it doesn't mean that we can't bound them to some degree of certainty.

CHAIRMAN CLAWSON: Okay --
MR. ROLFES: Once again, the organ of significant -- you know, the target organ essentially is the respiratory tract, and I think we, you know, reiterated once again that, you know, 90 percent or greater of the respiratory tract cancers that we've received claims for at Fernald have been

CHAIRMAN CLAWSON: Okay, I
appreciate your time to be able to explain that. I'll turn the time back over to you.

MR. STIVER: Okay, let me go

1 ahead and distribute out some of these
2 handouts here.

4 thorium time line that we put together, but we
5 have something taken from Bob Morris' time
6 line that we put together in 2008, which is
7 essentially the exact same information.

9 quality of the first two. We tried to explain 10 what's going on as much as possible.

I'm not able to explain the

So I apologize for the poor

Anyway, I'll try to keep this as brief as possible without losing too much of the detail that I'd like to cover. If you take a look at that first table there that I gave you. That came out of the original version of Bob Morris' white paper on how to use the daily weighted exposure data derived from a alpha-air concentration samples that were taken before the institution of the lung counting program in 1968.

That's really the heart of the issue here is can we -- is there sufficient

1 data available to reconstruct thorium doses --
2 internal doses during the period 1954 to 1968
3 before the lung counting program started.
My readings have shown there is an
5 extensive discussion of this a little over a
6 year ago in the March 2008 working group
7 meeting. There were action items prepared for
8 October, and for a number of reasons it never
9 got to the table, and so here we are over a
10 year later just getting back to this issue,
11 and as a result I would like to recap some of
12 the action items and some of the discussion
13 that took place back in March about delivering 14 the point.

16 that meeting with two action items. Both

21 could be used in a dose reconstruction for
22 various -- selective years.

2 advisory board, recognizing what an enormous 3 undertaking this was, decided that it would be

4 better to do a sampling of that data.
5 Basically, what they decided on was to look at
6 all plants for 1955 through 1966 and then
7 Plant One for 1960, with the supposition that
8 if the data were adequate for those years and
9 those plants then they would probably be
10 adequate for the other years, as well.

12 to post these 160 -- roughly 160 DWE reports
13 that you see on that first table. All those
14 little dots -- actually, there's 167 of them.
15 Each one of those represents a facility and
16 year for which these DWE reports are
17 available.
As a corollary to that the dat

The second item that NIOSH got was

Our review of the data that's out there on the $0:$ drive indicate that we were able to discover 152 of these DWE reports. Selective sampling within that set of data indicated that the job exposure evaluation are

1 data that were in those reports were indeed 2 what was transcribed in the spreadsheets.

4 two of them, they contain a substantial amount
5 of data. All this job exposure evaluation are
6 data for various clients for different years,
7 but not all of them.

8
9 review the data and in addition to that the 10 co-worker model, with the ultimate goal of

11 determining whether this data was adequate for 12 the purposes of dose reconstruction for all

21 to shift the focus to looking at all the
And our action item was really to categories of personnel, all years, during the periods of exposure.

Now one of the first things we came up against was that in looking at the spreadsheet data, all plants are not covered for 1955 and 1966, and in addition to that we're not able to locate a set of data for Plant 96 in 1960, so what we decided to do was different facilities in years of thorium

1 production, or when we believe thorium
2 production took place or inferred that it took
3 place and get an idea of what's really out
4 there, kind of a preliminary snapshot of the
5 data availability as it stands as of March of
$6 \quad 2009$.
Now it's important to note that
8 resolving these action items really get to the
9 heart of -- the action items or the issues
10 that were identified basically 4.3-1 through
11 4.3-10. All of those issues are really -- the
12 common thread here is whether this air
13 sampling data is adequate for dose
14 reconstruction, with the exception of 4.3-6 which gets to post-production era and whether the lung-counting model is adequate.

But most of these other issues all relate to this particular set of data.

Now the status of the action item -- before we really get into that there's a couple of concepts and reports and things that I'd like to talk about. This whole idea of

1 what a DWE is, and really what this is, a DWE
2 is just an average daily weight of exposure.
3 It's a way of assessing the exposure potential
4 for a particular job category at a particular
5 facility. And the data that were recorded
6 were in terms of alpha air concentration.
7 These were both in terms of general air and in
8 breathing zone, types of samples.

A whole series of anywhere from maybe one to up to 20 to 30 samples would be taken for each subtask that is defined within a particular job category. So you may have 16 different tasks for a particular job, and each of those tasks is assigned a time period within that day, so when we sum up all those times you end up with eight, eight and a half hours, basically the entire daily exposure.

For those samples that were taken for those different tasks, like I say they can range anywhere from this one sample up to 20 to 30. Some very basic statistics were provided just below the high and the average

1 value. And to calculate this DWE then what
2 they did was multiply the time for the task,
3 time for the average concentration, sum all
4 those up, and divide by the total amount of
5 time. And so what you then have is this kind
6 of a generalized overall weighted average of
7 the exposure potential for that person or for
8 that particular job category.
And another interesting point is
10 that in looking through just preliminary
11 review, not an in-depth review but just
12 looking at the sample of these DWE reports, it
13 looks like the breathing zone data were really
14 associated with those particular activities
15 that had a high exposure potential over a
16 short period of time, like going into a
17 furnace, breaking open a mold, pouring thorium
18 into one of these bomb retorts along with the
19 calcium and zinc chloride to create the
20 derivatives, anything where you can really be
21 disturbing a lot of material, picking up a lot
22 of dust.

2 contrast were typically in the low
3 concentration areas like cafeteria, hallways,
4 locker rooms, general levels of a particular
5 facility, and so there's a mixture of these,
6 and for each of these DWE calculations. And
7 it's not a situation where you have a general
8 area and breathing zone for the same
9 particular operation or the same particular
10 task. So there really are two different types
11 of measurements.

21 doesn't give you any information whatsoever
The general air samples by

The DWE typically was expressed in multiples of the MAC, maximum air concentration, which was 70 off the EPN per cubic meter for 463 and was changed to 100 thereafter. An important point to note here is something that really permeates this entire analysis is that the method, the analytical method employed here is gross health accounting. And gross health accounting about isotopic specificity. And so what we're

1 forced to do then is rely on process knowledge
2 to infer what particular operations were
3 going. We have uranium going on this year.
4 We have thorium going on, and if we did have
5 thorium for however long is a particular
6 campaign. Was it three weeks, six months,
7 nine months, the entire year?
8

9

11 of what was going on.

21 interesting. I've had a chance to go through
MR. MORRIS: John --
MR. STIVER: Yes.
MR. MORRIS: -- if I may. When we don't know that data was specific to thorium or uranium we assume that they were thorium for that year.

MR. STIVER: Yes, I was going to get to that.

And, yes, DWE reports are very some of these. One that Bob included in his

12009 white paper happens to be for Building
2 Nine -- for Plant Nine during 1955, which is
3 the period of high thorium metal production.
4 And these reports are really very striking in
5 that the amount of material that's contained,
6 the consistency from year to year for the
7 different activities, they typically involved
8 about eight sections. They're about 30 to 70
9 pages long. They start out with an
10 introduction, which is just kind of a brief
11 summary of the processes that were going on at
12 the facility, a description of the sampling,
13 and an analysis method that was included.

There were two data tables. A
summary of Table One provides the average DWE for each job description at the facility and also a DWE for the entire facility.

Data Table Two contains the average air concentrations for specific operations or areas.

The discussions were very interesting too, because it really provides a

1 more detailed description of the processes or
2 controls that were in place.

4 recommendation section based on the study or
5 what did they discover, what types of
6 recommendations did they make in terms of
7 controlling exposures, or what types of
8 remediation or mitigation could be employed to
9 reduce the concentrations to workers.
And finally we have the appendix, and the appendix is where all these job exposure evaluation reports are found, and this is what really summarizes, you know, the tasks for each of these different descriptions. It gives you line by line what the inputs were for that DWE as I described earlier, and then the initial DWEs.

Two of these that I found
particularly interesting was the 1954 DWE report for Plant Nine, and that particular report was taken during a pilot study to really try to perfect the chemical processing

1 techniques. There were very few people
2 employed at that time, in the first half of 3 '54.

4

519 individuals, and the personnel are named.
6 Their actual names are there, their job
7 descriptions. These job exposure evaluation
8 cards for each of the different 19 personnel -
9 - their positions are included, a description
10 of what was going on at the time. This was
11 just kind of a pilot study, and it's very

21 there was 119 personnel, and the description
This particular report pertains to interesting. And then you see, of course, in the second half of '54 they really start to ramp up their production, and we don't have a DWE that has been identified for that particular period of time.

However, for 1955 there's a report that has sampling data collected all the way from March through November of '55, all related to thorium production. In this case, is very enlightening too because there's

1 always been this issue of, well, what
2 particular activities in Plant Nine in
3 relation to other plants. You know, with
4 uranium you have this concerted effort among
5 all the different facilities. You know, you
6 have the sampling plant grinding all the
7 material down to a uniform size. Then you
8 have the refinery producing the nitrate which
9 then goes into an oscillating oxide calcite 10 process, then to a fluoride production, and 11 then finally into metal production.

21 that was zinc there -- and then they were sent 22

And so there's always been this issue of what was going on at what particular plant and when. Well, this particular report shows that in Plant Nine they received the nitrate. They did the oxide production there, in Plant Nine, they sent it over to Plant Four to be converted into the tetrafluoride. It was then brought back to Plant Nine, and then the derbies were produced in the furnace -off for rolling off site and then brought back

1 on site again for cutting into various shapes
2 by the machine.

4 that particular DWE report, and this is
5 information I feel would be very useful, and
6 if that similar type of information is in the
7 other reports I think we can have a very good
8 handle on what activities were going on and
9 when, what the exposure limits were, what the
10 job descriptions. All this is a wealth of
11 information that's contained in these and 12 really, I think, help us to reconstruct these 13 doses to a very, very precise level.

DR. MAURO: Do you know if that
was thorium or uranium?
MR. STIVER: It was thorium.
That was during -- thorium was going on -1955 was the big year of production.

We don't have a DWE report for '56; however, we do have one for '57 and it clearly states that uranium is being produced in '57. So there's a tailing off of thorium

1 in '56 and ramping up of uranium production in 21955.

4 There's lots of data we can see here.

6 look at the -- which is this multi-colored 7 spreadsheet table here, Table Two. And our

8 initial approach here is to take a look at --
9 based on NIOSH's action item one, we're going 10 to look at just those that were called out

11 there, but it became pretty clear that wasn't 12 going to wake you up.

This was just kind of a snapshot.

The next I'd like to do is take a

And so this really looks like a really complicated table, but really there's -- there's only four types of data here, okay, and these all relate to the availability of the DWE reports. I've color coded it to try to make it a little bit easier to understand, but the values here -- we have in the first column years of production, and across the top the various columns we have the different plants. Basically, this was similar in

1 structure to Table One from the white paper,
2 and the values that are high, they're bolded 3 and not colored are essentially -- these are

4 values that have been transcribed into the
5 spreadsheets. These are the job exposure
6 evaluation line items. These are not
7 individual samples. These are either averages
8 or because they are single sample it could be
9 averages. But those are the individual task
10 items. That's how many were -- in terms of
11 breathing zone and general area samples.

12
13

14

DR. MAURO: Just a quick
question, for Plant One, 1954, there's a
number 16. Is that a three, I'm sorry, 1953.
MR. STIVER: Yes, sixteen
breathing zone line item samples.
DR. MAURO: Is that 16 breathing
zone samples?
MR. STIVER: Sixteen averages.
DR. MAURO: Averages, so the multiple breathing zone --

MR. STIVER: This is basically 16

1 tasks that are identified.

6 any -- say for Plant Nine, that DWE report,
7 there was over 400 individual samples for that 8 particular DWE. It could be more, it could be 9 less.

21 and so forth.
DR. MAURO: Sixteen tasks, okay.
MEMBER GRIFFON: And those are
the average for each task?
MR. STIVER: That could contain

MEMBER ZIEMER: And then the 11 general areas are specific -- averages of specific areas?

MR. STIVER: Those would be just, you know, continuous air monitor --

MEMBER ZIEMER: Yes, so 11
locations?
MR. STIVER: Yes, those would be locations associated with those activities during the period like, say, going to the cafeteria or time spent in the locker room,

I see Plant One really has the

1 lion's share of the available data at this
2 point. If you get down here below the actual
3 -- below 1969 you see there is the sum of the
4 DWE samples by type. That is just a summation
5 by plant of all the years.

7 shows the ratio, basically the breathing zone
8 to general air by building, and it's kind of
9 interesting here that you see -- whenever you
10 have -- for the facilities that have more than
11 about 100 samples, the breathing zone portion
12 or proportion ranges from about five to 25
13 percent of the --

So what, what does that mean? It may just be that, you know, fewer breathing zone samples are really necessary in order to characterize that. It doesn't mean, like I said before, that these are two different types of measurement, one being more accurate than the other in the same type of activity. They're different activities.

And let's see. The light brown

1 here is -- these represent DWE reports that
2 have not yet been transcribed, and there are
3 still quite a few of those. We'll get into
4 exactly how many and what they mean here in a 5 minute.

7 that we didn't think were available but
8 actually were transcribed or found and
9 transcribed but don't show up in Table One.

11 are supplemental data that we'll discuss at
12 the end here which I felt because it did
The dark blue shading are reports

And then this light blue really provide a lot of data related to some of the thorium facilities, I thought it might be worthwhile to include here and discuss a little later in regards to the last table.

Let's see, where were we here?
There are basically four types of sub-issues, if you will, that kind of come up in reviewing this data. The first really has to do with record applicability, and this again gets connected in a time line. The DWE reports are

1 basically for all out there data and there is
2 some portion of that is related to thorium.
3 The rest is related to uranium.
4
5 the approach here is to high-side the dose,
6 and the way to do that is to use the dose
7 coefficients for Thorium-232 as opposed to
8 Uranium-234. And I did a little calculation
9 on my own using the ICRD database. And it's 10 just to verify using Class M and Class S of

11 the two different nuclides, and sure enough, 12 for type M, the ratio of thorium to uranium, 13 the range is from one to one up to about 560 14 for round surfaces. And there's a whole range 15 in between there. And the values for Type S 16 are very similar.

21 get more granularity on the -- on the

1 confident that the doses will be claimant-
2 favorable.

4 a better handle on this, which might be kind
5 of labor-intensive, but it's worth bringing
6 up, is that if, you know, in Table One, which
7 was the time line of the thorium activity.
8 Now included in that, in addition to the time
9 of the activities, is the total production
10 quota in metric tons for -- by year. And so
11 we have that data. And now if we only had
12 some information on production capacities for
13 the various facilities and pieces of
14 equipment. It's my view that we should have
15 an idea of what a run time would entail, and
16 so we have at least a way to get down below a
17 yearly basis, maybe some fraction of a year.

21 involved in that. But I'm just going to put
22 Now I don't know if it's really worth doing that or if it's, you know, there would probably be quite a bit of labor it out there as a potential way to increase

1 the resolution of our time line.

3 on -- the thorium capability was usually not
4 fully used, so they ended up campaigning
5 thorium.
MR. STIVER: Yes, so it would be a short duration campaign.

MR. MORRIS: So because the equipment was really sized for uranium in many cases, and so the thorium was much smaller mass moving through than uranium.

MR. STIVER: So it's very, very solvent, except maybe in '55 when you have that big campaign.

MR. MORRIS: Yes, so usually the campaigns were short, and they stopped and started multiple times during a year.

MR. STIVER: Well, I kind of wondered about that because of the pilot plan. And you can see that from '64 to '79 there's always some flurry.

MR. MORRIS: But it didn't take

1 many days for them to do that. I think it's
2 a good suggestion. I just don't think it's
3 going to yield a lot of information.

4
5 something that's a lot of effort for the
6 results that might not really be that
7 practical in the long run.

21 we had that turns out did show up. There is
MR. STIVER: Yes, it might be

MS. BALDRIDGE: This is Sandra.
I have a question.
MR. STIVER: Yes?
MR. KATZ: Go ahead, Sandra.
MS. BALDRIDGE: How do you address the fact that there's no data for Plant Six?

MR. STIVER: Actually, there is data for Plant Six --

MS. BALDRIDGE: Well you said there wasn't.

MR. STIVER: -- from '61 to '63.
This is some of that data that we didn't think data for 1961 through '63, and the next table,

1 table three, really gets to what data is out
2 there, what would be valuable for the
3 assessments of thorium, but really has not
4 been transcribed.

6 this next idea, which is really the record
7 availability, and as of now, only 32 of the
8171 identified DWE records have actually been
9 transcribed. Well that doesn't sound like 10 much, but for our intents and purposes here,

11 if you go to table three, you'll see that what 12 we have here is a list of different

13 facilities, the reports that have been
14 transcribed for that particular facility, and
15 those that are not yet transcribed for years 16 of thorium production. And the ones that are

17 not yet transcribed I think summed to about 18 12. There's only 12 more that we need to get,

19 and so if we could -- I would say that if
20 we're going to grade or assign some priority
21 to a record transcription in order to get this particular analysis clarified, that would be

1 the data set to concentrate on.

3 table two. Another issue, kind of a sub-
4 issue, is this whole idea of the completeness
5 of the transcribed records. Now so far only
6 the job evaluation data, those line task items 7 have been transcribed into the spreadsheets. 8 Now the DWE reports obviously also contain the

9 DWEs for the jobs as well as for the entire
But if we can back up again to , Another issue, kind of a sub facility. And also it's not 100 percent clear yet whether all the job evaluation data has been transcribed for a facility that are actually posted. I assume they are.

But I guess my question is do you anticipate transcribing these other DWE metrics into those particular --

MR. MORRIS: I'm not -- I want to make sure I answer exactly the question you've asked. Are you asking, are we going to go farther back to find the original air samples?

MR. STIVER: No, no, not that.
But so far all that's posted are the task

1 items, the averages, the time for tasks, the
2 type of samples, so forth --

6 entire site.

21 going to go.
wondering if the -would not be -that.

MR. MORRIS: Yes.
MR. STIVER: -- but the actual
DWEs aren't provided, nor is the DWE for the

MR. MORRIS: Oh, but those --
MR. STIVER: -- but I was just

MR. MORRIS: Well, my intent

MR. STIVER: What source data are you planning to use?

MR. MORRIS: And we'll just
recalculate it. It's probably easier and more accurate for us to recalculate it with a spreadsheet than that's the original take of

MR. STIVER: Okay, all right. I was just kind of curious as to where that was

MR. MORRIS: I see the question.

1 I think we're going to stop where we are on
2 this.

4 record availability here, and I guess the last
5 one is really this Titan sample. There's a
6 large amount of data that is provided to
7 support this, but as I said, there's only 8 about six to 25 percent is breathing zone; the

9 rest is general air.

11 is because there was considerable discussion
MR. STIVER: Now we talked about

And the reason I brought this up about this whole issue at the March 2008 meeting, and then actually in the NIOSH draft response I copied out some text here. I think it bears repeating.

And then their contention here was
that the uncertainties, particularly those differences in breathing zone versus general air samples, are compensated in TBD by combining the data, which increases the data spread. Basically, you've got a broader GSD. By adding more data, you're increasing the

1 robustness of the sample size, but also by
2 using highly conservative assumptions for air
3 concentrations and model input. The intake
4 model includes the annualized thorium air
5 concentration values calculated at the 95th
6 percentile of the not normally distributed
7 thorium air samples for each year. This
8 results in a bounding estimate for intake that
9 is biased high in favor of the claimant.
10 Okay?

11
12
13
14

And a little later on here, it says, NIOSH emphasized the important point is there are clearly a large number of DWE records that are available to be used to reconstruct exposures in any manner deemed sufficiently conservative --

COURT REPORTER: Sir, I need you to keep your voice up.

MR. STIVER: Okay. On chronic thorium exposures for all workers. And I guess my -- this kind of gets more to the issue of the white paper.

1
2 sub-action items in NIOSH's Action Item One,
3 is to explain how workers will be assigned to
4 low, medium, and high exposure potential.
5 That's basically on the type of position they
6 held, but I didn't see anywhere in the -- in
7 the co-worker model where he addressed the
8 paucity of data, as well, and how to high side
9 to compensate for that lack of data in certain 10 situations.

21 lengths to describe how are workers going to
MR. MORRIS: You mean what a job description actually says?

MR. STIVER: Yes, so here you're saying that, well you know, it doesn't matter if you have a mixture. You have more general air samples that may not be use appropriate. Because we've got to high side all of our assumptions inside the 90th percentile. But you add in the Technical Basis document -- in your co-worker model, you can go to great be assigned to different categories based on

1 their exposure potential.

MR. MORRIS: I think that we need to understand those comments in the context of sequence. You know, the ones you just quoted are before our most recent version of the white paper, which has been informed by more information as we've gotten it. In fact, the information that you've presented this morning on job descriptions and exposures, where the mill man was the highest and a chemical worker was second highest, I remember --

MR. STIVER: Okay.
MR. MORRIS: -- we'll take that information and we'll fold it back in to helping make that decision about whether a worker is in that low, medium, or high category.

MR. STIVER: I understand how you
did that. I mean, you go to great lengths to categorize all the different job descriptions, but in the situation where you have sparse data, and so you try to compensate for that by

1 assigning somebody to a high level, that
2 automatically puts them into the high exposure
3 category.
4 Now how does that -- I guess I
5 didn't see there was any mechanism in that
6 white paper to address that particular
7 subject.
8
9 exactly following you. That's my problem
10 right now, but we'll specifically deal with
11 that if you can give us a real concrete
12 example to work from, and I'll be happy to
13 take it --

14

21 nonetheless I think your comment is one that
MR. STIVER: I guess maybe because this is older discussion and things have taken place since then --

MR. MORRIS: Yes.
MR. STIVER: -- some of those
issues have been resolved.
MR. MORRIS: Perhaps but if it didn't come through clear in our white

1 paper, we need to make it clear. And so if
2 you can give me a concrete example I'll be
3 glad to work with it. And we can do that
4 offline.

6 offline.

9 Well, you know, despite all this talk about, 10 you know, the appropriateness of general air

11 versus breathing zone samples, I think looking
12 at the actual DWE reports show that they $\begin{array}{ll}13 & \text { really are kind of a mixture and that they're } \\ 14 & \text { really appropriate to the particular task at }\end{array}$ 13 really are kind of a mixture and that they'r
14 really appropriate to the particular task at 15 hand, so the reason -- another reason I

16 brought this up was that in looking at the 17 site profile there was a large discussion on 18 this, and the table presented showed this kind

19 of a plot of breathing zones versus general 20 air samples and how the GAs were consistently

21 low.
MR. STIVER: Okay, we can do it

MR. MORRIS: Sure.
MR. STIVER: Now let's see.

And I guess that would be

1 appropriate, if you're taking the two
2 different types of measurements of the same
3 basic task.

4
5 approach is pretty robust, and the data are
6 taken for the type of samples that's really
7 appropriate for that particular analysis. So
8 I don't really think that's an issue here, at
9 least as far as I've been able to tell by my 10 review.

12 has any other questions about Tables Two and 13 Three. Look at Table Four. Table Four was

21 averages. We have the actual air sampling
I guess we could go on, if nobody really a completely separate set of data that Bob Barton had located on the HIS-20 database back my second week of employment with SC\&A, where we naively assumed that this was the thorium data, and this is all there was.

And so we downloaded this data, and it turns out it's -- these are not data, and what we did is we went through and

1 cleaned it up and calculated some general
2 statistics, did some log-normal
3 transformations and some percentiles and the 4 distribution fits. And for each of those data

5 we summarized it by a total for year as well
6 as by each plant that's characterized per
7 year. We've got the number. And let me back
8 up one minute.

21 of the raw data that went into creating the
These are all breathing zone
samples. There's also a lot of general air samples that went along with this data set. At the time we were really concentrating on the breathing zone. And the reason I included this was because it looks like there are a large number of these data that may be useful in supplementing or at least validating some of the DWE data.

Now, of course, this is contingent
on being a separate data set, and I'm not quite sure whether this data was indeed some DWEs in the first place.

1

Back in the March meeting there was an extensive discussion about these 3,000 samples of thorium data. Now this may very well be the same data set. I don't know if it is or not.

MEMBER GRIFFON: Can you tell me. I'm catching up a little here on this thorium data, looking online and this may be a question for NIOSH but you're saying the raw data -- is this -- I know you approached a bunch of things. I'm trying to go through some of them now, like I say, catching up.

This says DOE raw data may contain Privacy Act. Is that -- or DWE, I'm sorry, DWE raw data. It's an Excel spreadsheet; is that the one?

MR. STIVER: Correct.
MR. ROLFES: That would be the
DWE data. We basically had our data entry team from ORAU go through each daily weight of exposure report by year, by plan --

MEMBER GRIFFON: Okay.

1
2 relevant --

4 data?

7 sample data. It's the data from the report.
8 So it's the averages, and this goes back to
9 I'm having deja vu again, but it goes back to
10 my original question. You have a radon
11 sampling. You have a high of 64,778, a low of 12 eight, and you have an average. And I think 13 you're using the average for your modeling.

14 Am I correct, or you're getting -- actually,
15 those averages go into building a job -- for 16 each job.

18 be a very high concentration for a short
19 period of time.
MR. ROLFES: -- and extract

MEMBER GRIFFON: But it's not raw

MR. ROLFES: Yes, it is.
MEMBER GRIFFON: It's not the

MR. ROLFES: And so there might

MEMBER GRIFFON: Right.
MR. ROLFES: And so that's
factored into an overall --

2 is a 55-minute sample, so I'm assuming it's
3 that task, that one task or whatever, and then
4 they get an eight-hour for whatever job that 5 is, right?

7 at these highs and lows that I think anyway, 8 because you sort of wonder what worker was 9 getting eight while the other worker's getting

1064,000 doing the same thing.
MEMBER GRIFFON: Right, and this , right

It is interesting though to look

MR. MORRIS: Well, they were on different days. They were not --

MEMBER GRIFFON: Okay, so are we talking about the DWE day? I hear my days but they're supposed to be representing the same task.

MR. MORRIS: I think you're talking about air samples, aren't you?

MR. STIVER: We are talking about the raw air sampling data.

MEMBER GRIFFON: We might be -that's what I'm trying to figure out. I don't

1 want to be talking apples and oranges.

21 probably are the DWE. breathing zone? samples --

Raw Data. the high, low, and average, so --

MEMBER ZIEMER: This is --
MEMBER GRIFFON: This is the

MR. ROLFES: Correct. That would
have been the raw data that was basically compiled into a single spreadsheet. That was not the raw DWE data. These are raw air

MEMBER GRIFFON: The title is DWE

MR. ROLFES: -- which may or may
not have been used in the daily weight of exposure reports, so I don't know if these were separate samples that were taken, in addition to the daily weight of exposure --

MEMBER ZIEMER: Thirty-six were

MEMBER GRIFFON: Right, right.
MR. STIVER: So those are

MEMBER GRIFFON: This must have

1 come off the job sheets. And then you sort it
2 by task, it looks like because there's --

4 task.

6 there's year, plant and category, and this one
7 is sample prep operations. And then it tells
8 the operation --

19 DWE raw data.

21 yes. It's in your DWE white paper folder,
MR. STIVER: Yes, it's sorted by

MEMBER GRIFFON: Yes, but then

MR. ROLFES: Yes, it kind of
looks like --
MEMBER GRIFFON: That's the worksheet that it came from, yes.

MR. ROLFES: So it is in a daily weight of exposure spreadsheet is what you're saying, Mark? It's from the DWE?

MEMBER GRIFFON: Well, the title
-- the title that you -- that it is --
MEMBER ZIEMER: If you call it

MEMBER GRIFFON: DWE raw data, yes. It's in the DWE white paper folder, so

1 I don't know which one's which but there's
2 three spreadsheets and a white paper.

7 that you -facility and time.

MR. ROLFES: That's correct and, yes, that is extracted from the daily weight of exposure report.

MR. STIVER: Those are the data

MR. ROLFES: Yes.
MR. STIVER: Okay, let's see, where did we leave off here? Yes, Table Four.

Now like I say I posted this with this other data set because I felt it might be useful as a supplement or also as possibly a -- another data set that may be used to invalidate or benchmark the statistics that were calculated based on the daily weighted averages using actual results for a particular

Is Bob Barton on the line?
MR. BARTON: Yes, I am.
MR. STIVER: Bob, do you have any more insights to where that data came from or

1 how it was related to the DWE data?

3 we downloaded?
4 MR. STIVER: Yes, that first set
5 that we downloaded back on, I think it was
6 March 11?

21 there, and that's why we originally go in that
22
MR. BARTON: That first set that

MR. BARTON: It's how that was originally intended to be used.

MR. KATZ: Bob, your voice is breaking up. I don't know whether you're using a speaker phone or --

MR. BARTON: Can you hear me okay now?

MR. KATZ: Yes, that's better. Thanks.

MR. STIVER: Yes, that's better.
MR. BARTON: Okay, to start over again, I did not find any guidance as to how those air samples were going to be used. The original going in to try to find this data set direction.

MR. STIVER: Okay, it might be worth our while to -- to, you know, do some comparisons against the DWE data and just see, you know, whether we can kind of get a match up and see whether in light of what actually might have been the source data.

And if not it could be pretty useful as a supplement to what's already out there.

MEMBER GRIFFON: Can I just ask -- and I apologize. I had to step out and take a phone call, so I might have missed this, but -- or else we discussed it at previous meetings and I'm blanking out on it, but the -- when you say high, medium and low job categories how are you assigning doses to each one of those categories. What's the -- is it a co-worker model with all this data in it, or what's the constant?

MR. MORRIS: I don't have it open but it's 16th percentile, 50th percentile --

MEMBER GRIFFON: Sixteenth, 50th

1 and 84th, something like that?

3 right, and one has variability and one's a 4 fixed number.

6 the white paper?
MR. MORRIS: I think that's

MEMBER GRIFFON: Okay, so it's in

MR. STIVER: Yes, it's in the white paper.

MEMBER GRIFFON: And it's based on the values populating that distribution part of the average. Are they job averages or what's populating that distribution?

MR. MORRIS: They're really
facility averages.
MEMBER GRIFFON: They're facility averages.

MR. STIVER: Averages the DWE for each job description.

MR. MORRIS: The reality is, you know, we talked about it.

MEMBER GRIFFON: Each job or each
facility or what?

1
2 probably more detail and I would put in it if
3 I were writing it again today. I described
4 how if you knew exactly the job description of 5 the person and how you can match a DWE report

6 for that facility --

9 you can reduce your uncertainty side really 10 matching it up. But the reality is that most

11 of the time we won't have that.

MR. MORRIS: The white paper has

MEMBER GRIFFON: Right.
MR. MORRIS: -- you don't have --

MEMBER GRIFFON: Right.
MR. MORRIS: So what we would then do is say here's the DWE spread for the facility. It goes from -- a job description has got this little of exposure.

MEMBER GRIFFON: So you have this distribution for each plant, for each Plant One, Plant Two, Three, and not necessarily -or over --

Do you have different distributions for different years or --

1

2

MR. BARTON: Yes, every year for -

MR. MORRIS: Every facility, every year gets its own spread.

MEMBER GRIFFON: Okay, got it.
MR. MORRIS: And just to answer,
Mark looked this up for me a lung-exposure potential is a constant at the 16th percentile of the distribution. Medium is the 50th percentile of what the GSD -- based on the observed GSD for the data, and the high is 95th percentile.

MEMBER GRIFFON: Ninety-fifth, okay. And -- I think that's it for now.

MR. STIVER: Okay.
MEMBER GRIFFON: Thank you.
MR. STIVER: Okay, we haven't really gone into any analysis of the white paper in any detail but because at this point we're really trying to sort out the data -the data granularity and veracity and applicability, and I think once we have that

1 information in a situation we have a clear
2 picture of what data are available, where the
3 gaps are, then it might be more useful to
4 conduct a more systematic review if the
5 advisory board feels that that's appropriate
6 for the white paper and maybe come back with
7 some comments on that, as well.
8
9 think the best thing to do is to probably get
10 those DWE reports that identify reports and
11 get those transcribed, and then we can
12 probably from that maybe do something similar 13 to what John did, maybe not to that level of 14 detail in assessing the granularity and where 15 the gaps may be.

MR. MORRIS: But I guess my
thinking is that's why we just went off and did this demonstration, to show that our data were going to be good enough. And, you know, we know we can go transcribe that and apply it to the white paper. The question is is that going to be what we need to bound doses in the

1 SEC context.

4 meetings that it all started to come back. It 5 was not the original intention to load up 6 everything.

9 massive amount of material, we deliberately
DR. MAURO: Yes, I think that -when you were summarizing the previous

MR. MORRIS: Correct.
DR. MAURO: It was because of the picked selected years and buildings as being good ones to represent the entire set, and if those hold up well, those years and those buildings, in terms of the ability to recharacterize --

MEMBER GRIFFON: That's right.
DR. MAURO: -- these intakes --
MEMBER GRIFFON: It's coming back.

DR. MAURO: Yes, it's coming back. We'll stop. Now is that right now are -- is the database complete with regard to those years and those buildings?

MR. STIVER: For those years and those buildings from Table Three, we're halfway there, but there's not that many more reports that need to be transcribed. I think there's like 11 or 12 of them on there.

MR. MORRIS: I was under the impression we have done all that.

MR. STIVER: Actually, the ones that were requested were for '55-- all buildings for '55, all buildings for '66 in Plant Six for 1960?

MR. ROLFES: Correct.
MR. STIVER: And I did not see that that data was complete for those facilities. That's why we decided to take more of a generalized survey of what's actually out there.

MR. MORRIS: I see.
MR. STIVER: You can see in Table Two what's there for '55 and '66. There's some gaps that have not yet been transcribed.

DR. MAURO: You know what, just

1 to help you a little -- looking at Table Two
2 the original plan was to have a complete set
3 for which plants?

4

MR. STIVER: A complete set for
all plants for the year 1955 and 1966. I think in '55 you don't have Plant One. You don't have Two, Three or Four --

DR. MAURO: Oh, okay.
MR. STIVER: -- or Eight or Nine.
You don't have any of those.
DR. MAURO: This is very helpful
the work group.
MR. STIVER: And the same for
'66. You have the same basic --
DR. MAURO: Where there's ground
that means that in order for us to do the things that were asked of us to do, we still need NIOSH to provide that information.

MR. STIVER: Yes, those reports are available but haven't been transcribed.

DR. MAURO: They haven't been transcribed.

1
2 brown?

7 1966, as well.

9 '96, there will be no cross in '55 and there

11 brown with an X in it. That means this is
MEMBER ZIEMER: So everything in

MR. STIVER: Everything in brown.
DR. MAURO: In other words, all
the plants in 1955, right?
MR. STIVER: All the plants in

DR. MAURO: And all the plants in won't be any place where I guess there is a something that exists but hasn't been transcribed.

MR. STIVER: Hasn't been transcribed, correct.

DR. MAURO: So '55 and '66, and there was one more that you said.

MR. STIVER: Well, Plant Six in
1960. That was not included either. We have '59 but we don't have '60.

DR. MAURO: So in theory if we were going to continue on the path that we

1 originally laid out, that information would be
2 provided in the 0 drive. We would then go in
3 and do an analysis of that data.

4

5 original plan at the time. Now that still
6 doesn't really -- there are a couple of things 7 here.

MR. STIVER: That was the

To do that would require just as much effort as it would to get those sheets I indicated in Table Three for thorium, and by doing that with the Table Three worksheets we would then be able to have a clear picture of the thorium issue, not necessarily the uranium component but the thorium component because for the same amount of effort they could really bring this thing to a head.

DR. MAURO: A shift in plan to go

MR. STIVER: A shift in the plan to -- rather than look at those original plants --

DR. MAURO: Yes.

1
2 actually been done probably because for some
3 reason other parties came along and other data
4 was available initially. For whatever reason,
5 those plans were not transcribed, so to go
6 ahead and finish that out would be as much
7 effort when we look at the numbers of plants
8 that still need to be done as it would be to
9 go ahead and just, you know, get the ones that
MR. STIVER: -- which had not we identified that pertinent to thorium.

DR. MAURO: The ones that you feel --

MR. STIVER: The ones -- yes, based on a time line.

DR. MAURO: And where would that
leave you?
MEMBER GRIFFON: I thought those ones we picked originally were pertinent to thorium, but we learned more about the campaigns.

MR. STIVER: Yes, the more we
learned about it, we discovered a lot more.

1

2

MR. ROLFES: John, you were mentioning that for 1955 the brown on Table Two denotes that the report exists but we've not transcribed it into a spreadsheet.

If you take a look we did send three different -- three different DWE raw data spreadsheets, and if you take a look the spreadsheet that I'm looking at has 1955 Plant One and it has DWE data. I'm not sure if we're --

MR. STIVER: Okay, I got -- we got two spreadsheets. We didn't get a third, so maybe there is a third that has more of this data available.

MR. ROLFES: There are three out there, and let me point them out to you.

MR. STIVER: I don't have access to --

MR. ROLFES: We have the DWE raw data dash Privacy Act Information, Excel file which is dated 03-24-2009. The Fernald DWE raw data granularity, 04-16-2000.

MEMBER GRIFFON: That's the one I showed you, yes.

MR. STIVER: There's one at 04-16 which is raw data by plant year.

MEMBER GRIFFON: And that was the biggest one that had the most data.

MR. STIVER: Let me go back to the actual data files here.

MEMBER GRIFFON: And then there's an FMPC.

MR. ROLFES: That was the copy of DWE for 04-16. And then there's, let's see, the third one.

MEMBER GRIFFON: FMPC, DWE --
MR. ROLFES: Correct. And the one that has the 1955 data would be the DWE raw data dash may contain Privacy Act, so there is a total of three that are available out there. They were all added on March 24, 2009, to the advisory board.

No, I take that back. That is the date that I put them on my disk. They are on

1 the advisory board review board.

6 approach. Three Excel spreadsheets and the --

18 last sheet.
MEMBER GRIFFON: They're on the DWE white paper.

MR. ROLFES: And also with the
Microsoft Word file that describes the

MR. STIVER: We only have two of those. The third one then only has that 1955 data.

MR. ROLFES: I think we've completed the data transcription for really more than we were tasked to.

MEMBER GRIFFON: So you think you
did all those --
MR. ROLFES: I think we did.
MEMBER GRIFFON: -- and SC\&A just
didn't see that last -- or didn't get that

MEMBER ZIEMER: Well, maybe they can work that out.

MR. STIVER: We can work that out.

1
2 done on this job? What's the next step.

4 I think is really to flush out the rest of the
5 thorium, the data that's pertinent to the --
6 Table Three, those particular sheets. If we
7 can get those we can really come to where we
8 have a clear picture of the data.

21 available that we need.
DR. MAURO: Do we have a need for

1 a group of principles -- step for this
2 process, in other words a case and show how it
3 would be done. One of the things that's often
4 done is say, okay, we've got all these data.
5 There's a white paper describing how you're
6 going to do a dose reconstruction.

21 are now. Obviously, you have a sense of --
MR. STIVER: Why don't we just go ahead and take that white paper and try it.

DR. MAURO: Try one out?
MEMBER GRIFFON: We have to kind of test one. The question is do you have the information that you're laying out.

MR. STIVER: Yes, yes, at this
point this is just a preliminary snapshot and it's by all means not complete, but I believe that would be certainly a logical next step would be to --

DR. MAURO: Well, there would be
two different -- I mean, first of all does the work group want to -- you understand where we and it sounds like do you want us to continue

1

4 report out. And second do we want to stick
5 with the old plan, or do we want to go with
6 your recommendation. Let's go with Table
7 Three. Right now it sounds like that NIOSH
8 has loaded up all the data -- '55, '66-- it's
9 there we just don't find it. And we can just
10 continue down the road we planned.

21 that the third spreadsheet has these
22
MEMBER GRIFFON: Yes.
DR. MAURO: -- and put a white
ar do we want to go with

MR. STIVER: I guess the next step really is to ascertain what's in that third spreadsheet.

MR. ROLFES: Yes, the third spreadsheet does include 1960 plant data, 1966. It's got several plants. The 1955 data has several plants.

MR. STIVER: Okay, could you take a look at the handout, Table Three, the DWE report not yet transcribed? And can you see particular reports.

1
2

6 '54, '56 and '66. transcribed -plan? see if pilot plant for -off -that we need right there.
one that we need.
pertinent.

MR. ROLFES: DWE report not yet

DR. MAURO: Yes.
MR. ROLFES: Okay.
MR. STIVER: I've got a plan for

MEMBER GRIFFON: Oh, a pilot

MR. ROLFES: I have got roughly
1,500 data points in here so you're looking to

Okay, we've got 1955, Plant Nine. Maybe it would be easier for me just to read

MR. STIVER: Okay, so that's one

MR. ROLFES: 1955, Plant Four?
MR. STIVER: Okay, that's another

MR. ROLFES: 1953, pilot plant?
MR. STIVER: Not really

6 that one.

9 one.
okay.

MR. ROLFES: 1956, pilot plant?
MR. STIVER: We do have that, good. That's one we need.

MR. ROLFES: 1960, Plant Six?
MR. STIVER: Yes, yes, we need

MR. ROLFES: 1966, Plant One?
MR. STIVER: Yes, we have that

MR. ROLFES: 1966, Plant Eight?
And I don't know. I started in the middle somewhere so let me reiterate. If -- I apologize if I'm repeating myself here, but 1955, Plant One?

MR. STIVER: Got one at '55,

MR. ROLFES: 1955, Plant Nine?
MR. STIVER: We've got that, yes.
MR. ROLFES: 1955, Plant Four?
Have I repeated those?
MR. STIVER: You've repeated
those. 1955, I think you've already gone

1 through.

3 other data.

7 in the other files here and check.
MR. ROLFES: Okay, so that -- any

MR. STIVER: Do you have anything
for '54 for pilot plant in Plant One?
MR. ROLFES: Let me take a look

CHAIRMAN CLAWSON: I apologize,
but I guess I'm kind of confused on a path forward. Are we going to continue on with --

MEMBER ZIEMER: Well, I would -critique the white paper.

MR. STIVER: Yes, it looks like
just from what we see right now we have more than half of what we thought was not yet
transcribed here, so I think we're well on our
way to be able to critique the white paper.
MEMBER GRIFFON: And the other
thing, and let Brad finish us off here, but
I'll send this updated matrix out to you
because I can tell you there's some things
hanging, like the later -- when you're using

1 in vivo for thorium. It's the later years. MR. ROLFES: Yes, I think we
discussed that in pretty much detail at a previous working group.

MEMBER GRIFFON: In here it says action, so I just highlighted those. If they come back and we all agree that it's closed, that's fine. I'm just going to highlight them, then the next time we meet we'll sort of check those off and get rid of them.

MR. ROLFES: Do you recall what the action might have been there?

MEMBER GRIFFON: Well, I have several pages here, but --

MR. ROLFES: I want to make sure that if there's something that we were asked to do that we completed it.

MEMBER GRIFFON: It actually says
SC\&A will review NIOSH white paper for the in vivo.

MR. ROLFES: Just as far as I can
tell from everything that I have been

1 tracking, NIOSH has completed --

5 we've been asked to do.

21 review. action. get it out. data review.

MEMBER GRIFFON: Yes, every

MR. ROLFES: -- everything that

MEMBER GRIFFON: So I'll just --
I'll highlight -- I think we just, you know, we had certain high priority ones, then we had some other ones. I just don't want to lose track of the ones that might not have been on people's radar, so I'll do that and Brad can

CHAIRMAN CLAWSON: I appreciate
that, but on this thorium issue I want to get
my hands on where we're going. We're
proceeding ahead. As we previously stated, SC\&A is going to review NIOSH's white paper --

MEMBER GRIFFON: And complete the

MR. STIVER: Complete the data

CHAIRMAN CLAWSON: Okay, did I

1 leave anything out on it or --

3 for today. Is there anything else that needs
4 to be brought up before we leave.

7 the phone. The meeting is adjourned.

8

9 above-entitled matter concluded.)
MEMBER GRIFFON: We're all tired.
MR. KATZ: Thank you, everyone on
(Whereupon, at 5:45 p.m. the

10
11
12
13
14
15
16
17
18
19
20
21
22

A	accomplish 17:14	activities 56:12	362:13,16	380:11 409:6,9
ability 102:18	17:15	364:14 367:7	adequately 185:5	414:8 420:16
111:17 122:19	account 55:7 312:5	370:2 371:8	adjourned 421:7	air 306:5
169:14 350:11	335:22	374:18 375:21	adjudicated 211:14	315:3 318:16
404:13	accounting 150:13	378:9	administrative	319:1 320:13
able 10:20 13:14	268:2 365:20,20	activity 22:5 295:	108:18	336:6 347:6
15:20 63:6,10	accumulate 345:5	354:1,7 375:20	admit 302:10 326:6	348:19 354:17
76:20 77:1,2,4,10	accumulated	378:7	admittedly 266:13	362:12 363:6,7
77:13,17 88:18	263:2	actual 18:5	adopted 313:18	365:1,13 367:19
92:12 105:13	accuracy	38:18 40:1 47:7	advantage 170:10	374:14 375:8
111:11 114:4	197:18	138:22 254:20	advisory 3:5,8	382:20 384:9,19
169:13 183:22	accurate 26:9	266:10 270:13	40:10 118:16	385:2,4,7 386:16
242:7 272:13	166:5 260:13	282:5 306:22	132:8 149:1	389:10,20 390:21
357:19 358:3	298:13 375:19	311:6 354:5 369:6	152:19 175:3	391:10 394:18,20
360:20 361:19	383:16	375:2 383:4	199:19 303:22	395:8 398:19
377:20 390:9	accurately	389:12 390:21	360:2 403:5	airline 247:8
408:12 418:17	195:5	397:17 411:8	411:20 412:1	airplane 333:8
above-entitled	achieved	Adams 2:10 8:10	AEC 223:2	Airport 1:15
199:14 303:18	acknowledge 86	8:11	affect 102:18 259:6	alance 262:4
421:9	104:9	add 127:10 128:2	335:22	alert 176:10
absence 318:22	acknowl	245:15 280:1	affinity 341:17	Allen 2:14 7:21 8:1
354:17	23:7	283:22 291:22	affirms 256:20	allow 293:17
absolute 71:13	acquired 149:16	303:5 324:19	afternoon 11:11	allowed 293:6
absolutely 13:19	Act 9:10 13:22 14:	386:19	199:18	Ow
49:2,12 90:7	392:14 410:20	added 151:7	aged 237:20	alluded 88:14
227:13	411:17	153:18 411:	agenda 117:15	350:10
Academy 326:20	Acting 1:23	adding 324:9	age-old 351:10	alpha 150:2 363:6
327:1,16 328:22	action 45:14	384:22	aggregate 28:16,21	alpha-air 358:18
346:9	109:10,14 112:13	addition 15:2 21	290:17	alternative 306:20
acceleration 321:6	119:7 129:12	165:11 313:15	ago 105:9 263:18	al-NABULSI 2:12
accept 144:12	131:5 136:12	361:9,18 378:8	305:14,16 359:6	7:12,12
258:5 263:15	144:11 154:12	395:16	agree 30:7 94:4	amazed 86:20
265:16 334:6	302:18 351:14,21	additional 20:21	116:18 141:22	ambient 106:14
acceptable 278:15	355:20 359:7,12	70:18 225:3 271:3	142:17 170:12	AMERICA 1:1
310:7	359:16 361:8	271:15 309:19	79:3 188:16	amount 22:5 27:1
acceptance 143:12	362:8,9,19 372:9	311:22 324:11	205:2 238:15	38:9 96:20 99:21
143:19 144:12	386:1,2 419:6,12	355:6	248:19 249:4	100:2,3 101:5
149:13	420:3	address 221:2	346:6 348:12	103:16,20 166:6
accepted 230:17	actions 114:22	380:13 388:6	352:7 419:7	222:7,11 237:20
261:11 266:14	119:6 297:7,15	addressed 386:7	agreeable 144:5	252:9 264:3
301:12	350:7 352:17,19	addressing 157:9	agreement 119:7	275:21 292:13
accepting 233:14	activated 319:12	adds 205:13	135:13	293:19 334:22
283:7	328:5,	adequacy 17:1	agrees 200:16	335:15,22 337:9
access 222:5	activation 281:1	196:20	ahead 75:18 187:6	361:4 364:4 367:
312:22 314:14	320:1	adequate 16:13,14	259:11 276:1	384:6 404:9
410:17	active 86:22 91:19	29:20 157:3 158:9	334:19 337:11	408:15
accident 158:11,16	actively 319:20	360:8,10 361:11	346:18 358:1	amounts 272:16,18

Neal R. Gross \& Co., Inc.
(202) 234-4433

analyses 237:18	269:5,5 382:18	apply 33:18 35:22	argues 324:22	148:15 151:18
245:2	402:6	35:22 36:2 86:9	325:5	153:6 164:16
analysis 10:3 53:7	answered 47:19	90:2 267:17	arguing 271:4	177:1 179:16
59:13 74:18	answering 126:17	403:20	argument 139:17	190:17,18 192:14
110:13 112:19	161:11	appreciate 118:20	186:4 258:15	193:8 349:5
113:6 126:16	answers 158:8	347:2 355:19	291:19 294:2,7	382:19
164:10 165:12	253:1 270:2	357:19 420:13	344:5,7	aspect 14:1 188:14
190:11 194:6	anticipate 382:15	approach 21:9	arguments 280:11	assess 186:21
237:13 243:14,22	anxious 245:9	45:14 112:16	297:9 334:13	assessed 289:8
248:22 251:8	anybody 6:14	120:11 124:11	arises 276:14	assessing 363:3
252:5,6 253:7,7	84:17 178:15	162:16 215:9	arising 286:1	403:14
253:14 264:18	anymore 186:6	225:4 273:15	Arjun 2:6 5:21 6:2	assessment 93:8
265:4 266:14	anyone's 294:11	294:12 325:16,19	113:16 159:9	112:20 120:9,15
269:18 283:2	anyway 41:2	327:3,9,16 334:9	217:6 226:15,17	182:11 306:20
284:12 286:5,17	107:18 113:9	372:8 377:5 390:5	227:8 228:15	307:15 335:14,21
286:21 300:16	114:7 120:16,17	412:6 413:11	230:4 255:8	assessments 381:3
318:19 327:18,19	124:14 127:5	approached 392:10	264:22 265:11,21	assign 20:16 23:6
329:13 338:1	128:6 146:16	approaches 267:10	266:13 276:17	39:6 70:12 81:3
346:8 350:22	189:19 206:14	appropriate 18:14	286:12 287:5	110:22 125:7
352:4 354:13	313:16 317:6	100:17 121:19	288:3 295:16	136:3 231:9
365:18 367:13	358:11 394:7	123:16 193:12	300:12 302:2	349:22 356:22
381:22 390:7	apart 39:18 105:21	307:22 327:7	arms 15:1	357:2 381:20
402:18 408:3	apologize 116:13	386:16 389:14	arose 173:12	assigned 73:8
analytical 149:18	353:9 358:8	390:1,7 403:5	array 28:7	81:20 348:15
243:13 263:11	399:11 417:13	appropriateness	arrows 317:15	363:14 386:3,22
365:18	418:8	389:10	article 322:6	assigning 28:20
analyze 261:5	apparently 322:22	approved 339:5	artificially 79:14	226:7 348:3
analyzed 74:1	appear 185:10	approximate 71:10	ascertain 415:12	350:19 388:1
166:6 261:6,10	appears 112:6	approximately	ash 246:8,10 247:1	399:16
263:8 264:13,14	235:17 250:16	38:14 157:13	250:19 262:21	assignment 351:6
278:14 284:10	256:15 296:10	331:11	284:7 291:1	associated 23:9
annual 68:6,9	331:3	April 1:13 316:8,19	aside 62:13	66:10 164:18
149:19 178:18,19	appendix 243:14	aqueous 278:7	asked 17:13,17	165:1 287:17
178:22 179:19	253:10 255:2	arbitrariness 71:6	64:17 75:21 96:6	326:9 349:15,16
180:11 204:12	300:15 309:7	area 59:11 86:16	96:18 115:3	364:14 374:18
205:10	314:11 322:5	209:22 210:4	126:18 128:21	assume 20:9,11
annualized 385:4	329:7 332:9	257:14 342:1	155:14 198:14	22:7 100:5 103:9
annually 180:11	368:10,11	345:7 365:8	200:5 215:7	103:13 104:6
195:7 202:20	apples 395:1	373:11	263:14 305:16,19	216:3 231:5 234:8
Anspaugh 2:6 6:5,5	applicability	areas 56:16 60:10	305:22 306:2	271:22 290:4
answer 21:11 59:1	376:21 402:22	60:11,13,13 80:12	308:2 382:19	299:21 323:11,19
62:22 64:17 66:17	applicable 270:20	107:6 125:5	406:17 419:16	331:16 340:2
87:9 117:11 124:2	application 85:4	273:20 351:8	420:5	344:17,22 366:16
145:16 159:18	121:11 314:20	365:3 367:20	asking 12:21 30:19	382:13
162:1 169:19	applied 86:5	374:11,12	90:11 92:6 93:18	assumed 21:4,5
178:5 179:17	183:13 216:2	arena 93:17 137:15	95:21 137:8	234:10 265:18
181:20,21 188:9	285:18 356:21	argue 82:9	143:11 147:18	271:13 290:3

Neal R. Gross \& Co., Inc.
(202) 234-4433

318:14 337:9	automatically	back 33:15 39:9,10	297:13 318:21	278:2 279:3
390:17	23:19 388:2	43:17 45:4 47:13	354:16	281:18 285:15
assumedly 319:15	autopsy 102:16	60:9 78:16 80:10	bad 189:17 288:18	313:22 325:20
assumes 300:19	availability 142:8	84:19 93:1 96:9	badge 170:21	337:7 348:3
assuming 21:1,17	362:5 372:16	97:9 101:7 105:4	182:22 183:18	351:17 354:22
29:5 51:18 53:3	381:7 384:4	105:12 107:10	187:7 191:15	368:4 372:9
241:14,15 255:3	available 11:6	108:4,16 109:7,10	badges 187:5 207:5	386:22 397:16
274:12 288:21	111:6 113:14	109:16 118:12	badging 84:12	400:9 402:10
289:10 293:1	138:7 146:11	119:14 124:22	balance 220:22	409:14
298:13 323:18	151:15,20 153:14	125:10,11 127:20	229:13 236:1	baseline 319:10
331:4 394:2	153:19 267:2	132:5,19,21	262:8 283:19	basement 345:4,16
assumption 21:8	277:22 278:11	133:13 136:12,19	284:6 285:2	basic 363:21
21:20,22 215:11	282:13 359:1	141:21 146:6	301:17 302:5	377:19 390:3
215:17 216:1	360:17 375:1	148:7 154:19	balanced 259:9	406:14
259:18 272:21	376:7 385:14	155:3 156:6 157:4	Baldridge 2:15	basically 16:16
330:6 334:2,22	403:2 406:20	162:2 163:19	6:21 8:5,5 12:17	18:4 19:16 20:5
assumptions 50:10	409:4 410:14	166:9 169:9	98:20 99:1 100:11	25:4 27:13 57:15
271:20 280:1,10	411:18 413:21	170:17 171:13	100:15,19 101:7	121:6 127:17
314:3 323:9 325:9	average 68:13,15	185:13,16 187:20	101:10,12,21	137:2 178:10
325:11 337:18	68:19,21 69:1,8	188:6 189:12	380:8,12,17	197:13,17 200:19
347:10 385:2	69:21 247:19	198:11 200:4	ball 34:4	221:16 310:4
386:18	284:8 287:1,2	206:5 207:14	ballpark 168:8	320:19 321:19
assure 14:3 230:7	299:18 311:9	219:9 221:19	barometric 313:12	322:14 324:21
355:5	313:13 317:1,8,20	223:1 224:4	314:2	325:6 330:22
assured 197:4	319:6,7,11 347:11	225:14 228:15,19	barrel 261:20	333:7,11 334:20
asymmetrical	363:2,22 364:3,6	232:11 237:1	299:6	339:10 340:7
333:8	367:15,19 374:4	244:9,18 245:22	barrels 245:13	348:1 354:3,18
atoms 331:5	393:12,13 395:18	256:7 257:1	barriers 335:2,7	355:15,19 360:5
attach 341:22	400:11	258:17 261:13	347:16	362:10 363:17
Attachment 27:8	averages 159:4	263:16 268:4	Barton 2:9 6:19,19	366:9 372:22
51:1,13 64:19	373:7,9,19,20	270:13,17 282:19	51:10,11,15,22	373:22 375:7
75:13 322:5	374:11 383:1	297:4,16 303:15	64:14 65:1,9	376:18 377:1
attachments 51:2	390:21 393:8,15	304:2 308:2 318:1	113:16,17 127:10	384:21 386:5
attempt 52:18	397:17 400:11,14	319:2 326:13	390:15 397:19,20	392:19 395:6
319:8 320:6	400:16,17	327:17 330:1,12	398:2,7,12,17	basis 106:20
attempted 309:12	avoid 327:22	343:10,12,16	402:1	175:18 268:9
attention 45:2	aware 218:10	348:11 350:3,17	base 168:6 277:17	271:7,14 273:20
71:15 249:10	255:11	356:5,15 357:20	based 11:9 35:13	283:20 289:1
250:19 299:13	awful 328:5	359:10,13 370:19	37:3 59:13 71:20	320:5 321:9 324:1
attributes 149:15	A-1 249:20	370:22 377:19	78:19,19 86:13	337:16,21 338:21
audit 192:15	a.m 1:16 3:2 40:7,8	382:2,20 387:14	99:11 100:19	339:6 350:15
193:17,20	118:14,15	390:16 391:7	104:15 111:1	378:17 386:19
audits 168:12	A/B 134:22	392:1 393:8,9	113:2 169:2	bat 35:4 85:10
:3		398:5 403:6 404:4	207:22 222:1,14	271:21
authorized 305:18	B	404:18,20 411:7	225:5,6 230:19,21	batches 274:8
automated 92:12	B 64:19 75:13	411:21 419:7	237:13 241:6	bean 192:4
96:10,10	311:3	background 262:3	242:20 272:10	bears 384:15

Neal R. Gross \& Co., Inc.
(202) 234-4433

Beatty 2:13 7:17,17	414:15	286:22 288:22	42:22 45:8 51:13	bolded 373:2
bed 102:17 161:1	believes 274:	289:20 290:13	63:9 81:1,2	bomb 364:18
191:3,4	belly 198	298:6 299:16	102:14 111:9	Bonnie 99:13,14
beds 315:	benchmark 397:15	bioassay 16:16,17	112:22 120:19	books 146:11
beginning 3:14	bend 336:12	19:12,13 27:20,22	163:9,13 198:11	boot 243:22 248:22
24:20 27:9 36:20	benefit 123:5	28:3 29:6 30:12	198:12,18 204:7	249:6,7 250:4,6
130:3 225:12	314:13	33:4,8,14 34:2,3	221:10 224:15,15	250:13 251:14,15
234:9,9 261:17,19	bentonite 342:18	34:18,20 35:2,10	232:6 245:13	252:5 253:8
309:9 329:19	best 37:3 83:19	36:1,2,7,11 37:12	250:8 252:7	264:17 269:1,3,6
334:21	116:8,15 117:10	44:4,10 48:21	301:12 326:16	269:17 290:19,20
begins 215:18	196:6 211:12	49:1,5 50:2,8,20	353:1 372:18	291:8 300:16
337:18	277:18,21 278:10	51:21 55:8,15	378:20	born 341:17,18
behalf 2:13 7:18	278:18 403:9	57:2,5,10 58:3,7	bi-weekly 207:5	342:1
283:13	beta 150:3 237:17	58:13 59:7 60:7	blank 200:20	bottom 121:20,21
behaves 101:2	279:3 281:21	61:3 62:5 63:13	blanking 399:14	214:14 216:16
Behling 2:8,10 6:15	282:10	64:7 82:15 83:12	blast 340:8	251:5 259:4,7
6:15,18 12:19,20	better 50:5 69:12	84:21 87:12 89:15	blended 245:11	267:5 270:5
13:10,13 14:3	70:2 105:13	90:18 91:7 92:4	246:10 264:12	273:22 304:22
102:8 169:5,7,17	220:18 360:4	92:15 93:20,21	278:12 289:22	311:4,16 312:16
170:2 195:15,16	378:4 398:14,16	95:10,11,18 96:17	298:7	317:15,17 318:4
195:18 196:4,17	beyond 232:20	97:6 98:4 99:3,20	blending 244:19	336:7 337:14
196:18 199:4	260:16 285:11	103:21 105:5	blends 21:18	bought 334:1
200:9 206:16	bias 52:19 207:19	106:12 107:15	blow 203:9	bounce 142:2,3
213:4 304:22	208:11 212:8	110:2,3,6 113:18	blue 57:21 58:2	bound 28:15 41:11
305:9 306:17	biased 53:8 82:4	113:22 114:1	376:6,10	121:12 179:13
307:7 312:13,17	385:9	119:9 121:1,5	board 3:5,8,14,15	293:16 357:8
327:21 330:21	big 32:4 71:13	122:8,18 123:5	4:9 21:4 40:10	403:22
331:7 332:22	120:7 141:9 160:	124:8 128:13	45:5 110:3 115:17	boundaries 14:8
339:18 340:20	161:18 163:6	138:22 139:2,17	118:17 132:8,18	bounding 21:9
341:10 343:19	181:18 186:1	149:3,9,22 150:19	149:1 175:4 176:4	44:20 100:9
345:2 353:21	192:8194:3	153:8 157:15	179:4 198:8,13	104:14 112:16
354:6	262:21 263:13	158:5,9 165:14	199:19 220:13,19	113:4 116:1
believe 9:18 16:3	290:18 321:15	176:19 182:21	220:20 283:3	120:10 280:10
19:18 24:22 35:12	349:6 371:18	183:6,18 184:4	303:22 360:2	294:6 385:8
46:15 65:9 87:3	379:14	186:3 188:18	403:5 411:20	box 261:14
87:22 96:22 97:7	bigger 189:1	191:15 192:22	412:1,1	BR 239:7
102:7,7,10 110:19	207:10	196:22 201:7,18	Board's 152:19	bracket 106:16
115:1,5,7,11	biggest 411:6	215:19 246:21	Bob 2:9 6:19 51:10	Brad 3:19 9:12
124:6 125:2	billion 241:4,9,1	259:8 271:16	64:13 113:11,13	200:1 333:13
132:16 134:15	241:19 243:4	272:2,11 298:17	113:15,15,17	418:19 420:11
146:6,8 151:16	244:2 247:17	bioassayed 58:16	126:21 358:5,16	Bradley 1:16,19
175:8 190:2	250:17 251:10,22	58:19,21 81:21	366:22 377:4	break 106:22 109:9
192:13 216:21	253:21 259:13	bioassays 84:6	390:15 397:19,21	117:13 118:19
278:16 326:7	268:8,12,15	203:20	398:9	132:4 198:17
332:7 333:1 334:6	272:21 273:19	biological 23:9	Bob's 209:5	199:2 205:18
340:21 345:18	274:2 279:11	bird's 72:4	body 102:22	302:16 303:12
347:6 350:4 362:1	281:9 284:9	bit 10:2 25:16,18	295:14	304:3 346:14

breaking 199:9
209:18 303:16 364:17 398:10
breath 10:3
breathing 306:4 363:8 364:13 365:8 373:11,16 373:17,21 375:7 375:11,15 384:8 384:18 389:11,19 391:9,13 395:4
brevity 324:8
Breyer 12:16
brief 99:4,6 304:3 305:21 346:18 358:12 367:10
briefing 306:12
briefly 40:12 276:18
bright 181:4
bring 14:10 52:16 127:20 250:14,16 297:2 408:16
bringing 378:5
brings 121:1
broad 195:7 236:16
broader 384:21
broke 207:2
broken 199:22 207:2,6 248:15
brought 47:12 101:13 156:12 245:6 344:6 370:19,22 384:10 389:16 421:4
brown 375:22 407:2,3,11 410:2
Bryce 2:4 5:2,6,7 5:11 219:18 221:7 232:1 234:19 238:1,22 246:10 257:20 262:2 292:15 295:1 298:21
budget 172:20
build 26:21 29:22 221:21 343:16

355:6
building 28:9 56:15

63:3,14,15,15
65:5,22 66:7,22
69:17 76:7,12
83:11 85:9 87:14
110:16 112:11 119:18 139:7,9 193:13 208:18 349:17,18 367:1 375:8 393:15
buildings 16:13
18:9 28:5 29:1
49:21 56:15 62:17 66:13 70:7,10 76:1,3,5 77:11 79:19 110:14 111:14 114:13 127:18 161:4 208:19 404:10,13 404:22 405:2,10 405:10
build-up 341:1
bump 289:14
bunch 236:21 288:15 392:11
burden 356:11
burdensome 187:22
buried 244:17
burner 356:6
business 276:22
button 8:11 9:2,4,5
C

C 3:1 311:3
cafeteria 365:3 374:20
cake 337:4
calcite 370:9
calcium 315:1 364:19
calculate 36:5 79:7 192:9 267:12 364:1
calculated 23:5
313:7 385:5 391:1

397:16
calculation 100:1 308:12 325:1,2 337:13 344:9 377:8
calculations 104:18 295:8 330:17 339:2 365:6
call 3:14 9:6 85:8 86:8 130:9 154:17 185:17 198:17 199:5 208:13 244:6 299:12 338:2 396:18 399:12
Callaway 2:14 7:21 7:21
called 24:8 51:17 59:9 78:3 80:7 200:9 219:3 235:4 235:12 253:15 306:19 336:17 372:10
calling 232:8 calls 131:1 campaign 366:6 379:7,14
campaigning 379:4 campaigns 270:8 273:21 281:14 282:22 343:3 379:16 409:20
Canberra 149:8 cancer 19:21 20:3 37:22 38:5 89:6 89:10 90:1 91:1 93:14 267:13 cancers 89:6 349:13 357:15
сар 342:16,18 343:3
capability 335:17 379:3 capacities 378:12 capture 67:4 149:16 183:1 captured 15:20

28:2 137:3 153:18 296:21
cards 133:20
149:19 369:8
care 12:8 93:21
116:11 252:9
careful 245:10
carefully 21:7
223:6 261:14 308:16
carry 74:8
carryover 129:18
129:19
case 20:4 28:17
36:3 89:10 106:7
107:16 114:19
122:22 123:4
138:22 158:11
159:7 162:22
183:2,15 185:8
189:14 191:13
194:12,15 202:11
233:3 241:7
272:15 276:2
283:9,9,16 284:14
284:15 291:1
295:5 317:4
369:20 414:2
cases 33:8 37:22
79:21 81:14 82:17
90:11,21 91:1,3,4
92:8 93:11 97:5,8
109:17 110:2
119:9 122:17
124:16 138:17
159:13 160:13
169:12,21,22
170:4,5 176:15
177:11 178:4,6,20
183:12 184:1
188:14 193:16,19
195:7,9,21,22
196:2,5,15,16
198:20 200:11,13
202:6 205:22
206:3 207:10,21
212:21 248:18

249:4 251:16
272:4,6,13 291:2
291:3,8,10 379:10
case-by-case
106:20 175:18
176:2
catch 39:11 128:4,6
catching 392:7,12
Catch-22 114:2
categories 16:14
28:4 29:1 33:15
34:9,10 38:9,13
38:19,19 49:21
62:2 77:21 79:19
85:1 89:14 90:4,6 108:17 120:22
121:2,3,12 127:3
160:14 161:4
162:14 167:12,19
167:21,22 168:3
180:9,21 181:2
361:13 386:22 399:16,17
categorize 387:20
category 29:6 53:7
78:2 80:6 85:10
85:13 94:11
108:20 111:11
122:7 125:12
139:9 184:6
191:16 204:13
363:4,12 364:8
387:17 388:3
396:6
CATI 114:11,12
caught 147:9
causation 38:7,12
89:8,11,22 91:15
91:18 92:2 123:3
267:15 270:22
272:14
cause 101:19
caution 196:20
CD 193:16
CDs 211:7
ceiling 317:13
cell 337:5

cells 337:3	chamber 282:11	156:5,8 278:1	cited 38:1 89:6	clarity 136:17
center 149:10	chance 37:11 189:7	chemical 80:8	102:9	class 60:15 71:10
CENTERS 1:5	196:9 249:11	85:20 86:21 88:4	citing 300:11	71:15 86:9 103:6
certain 4:8 19:20	322:7 346:14	90:7 106:2,4,10	claim 41:5 89:7	377:10,10
22:7 42:19 44:9	366:21	108:21 125:4	94:16,21 97:3	classes 33:16
101:5 180:9,10,10	change 59:5,14,17	127:6,14,19	106:19 123:1,6	170:18
201:19 211:9	59:18 60:11	179:10 181:6	155:16 172:20	Claude 322:6
259:20 285:12	127:12,20 135:18	197:10 224:17	267:14 270:20	Clawson 1:17,19
308:18 316:6	205:6 259:18	276:21 277:16	claimant 49:4 54:9	3:19,19 9:14
323:8 329:18	337:15	278:9 368:22	71:16 241:17	10:12 11:13,16,21
347:10 386:9	changed 126:14	387:10	273:15 274:12	12:3,7 14:9,18
420:8	278:3 279:8,19	chemistry 280:19	285:17 301:19	15:14,18 51:3
certainly 14:1 59:9	280:20 365:15	chloride 364:19	378:1 385:9	102:20 103:18
83:15 88:7,21	changeouts 201:9	Chmelynski 2:9	claimants 30:15	115:19 117:16
97:18 104:11	changes 150:10	6:21 7:1 65:11,16	33:5,6 34:1 49:5	118:5,20 119:10
129:20 147:3	309:4 313:13	65:18 67:17 68:12	90:18 116:5 117:4	119:13 129:9,13
154:17 172:18	changing 97:16	68:21 69:2 95:20	117:8 123:10	129:17 131:3,7,10
196:11 209:8	183:8	96:3 138:9,13	125:20 156:3,18	131:16 132:1
230:8 324:10	chapter 235:8,12	139:3,10 143:10	157:2	136:6 146:17
414:16	256:14,21 257:11	154:10,15,22	claimant's 40:1	198:2 199:7 200:2
certainty 357:8	257:11	166:16 167:1	claimant-favora...	210:21 214:7,17
certify 177:12	characteristic	168:7 194:16,20	44:20 103:5 197:5	292:10 296:2
cesium-137 282:1	263:21	194:21 195:1,14	claiming 53:17	297:1,11 302:14
cetera 63:14 130:5	characteristic	213:11,15 249:13	62:10	302:20 303:11
249:18 285:18	86:14	269:9,12,22	claims 37:16,18	304:4 333:18
316:16	characterization	choice 85:11	38:5,11,15 39:7	353:5,22 355:17
Chair 3:16,19,20	87:20	332:16	39:21 88:15,22	356:13 357:9,18
9:14 10:12 11:13	characterize 63:19	choose 75:1 323:1	89:10 91:6,9,17	418:8 420:13,22
11:16,21 12:3,7	107:11 108:5	chose 187:20	92:1,22 110:2,6	clay 342:18
14:9,18 15:14,18	375:17	CHP 305:12	111:17 113:21	clean 12:5,8 59:9
51:3 102:20	characterized	chronic 36:6 41:11	122:3 162:3 167:7	cleaned 277:20
103:18 115:19	262:18 265:20	53:3,4 100:10	171:4,5,12,16	391:1
117:16 118:5,20	333:22 334:3	105:18,19 179:12	172:13 211:14	clear 10:19 55:19
119:10,13 129:9	391:6	272:1 385:19	270:19 273:4,5	131:3 153:22
129:13,17 131:3,7	charcoal 315:1	chronically 290:12	348:17 357:16	183:14 204:9
131:10,16 132:1	charge 341:19	Chu 305:5 324:21	clarification 23:2	210:20 279:19
136:6 146:17	charged 341:17	333:15 334:3,9	35:21 47:22 51:4	320:13 332:10
198:2 199:7	chart 176:13	chunks 185:11	74:21 125:17	372:11 382:10
Chairman 1:17,19	chartered 302:6	Cincinnati 1:15	127:11 214:18	388:22 389:1
200:2 210:21	check 26:15 147:5	329:14	231:10 244:10	403:1 408:12
214:7,17 292:10	147:14,18,19	circled 51:9	clarified 224:7,12	413:8,20
296:2 297:1,11	158:1 212:12	circular 55:4	224:21 225:1	clearance 307:3
302:14,20 303:11	418:7 419:10	circulated 216:5	226:21 381:22	cleared 10:11,15
304:4 333:18	checked 148:13	circumstance	clarify 72:16	11:4,7,14,15,16
353:5,22 355:17	325:13	251:19 283:10	120:18 204:7	12:11 13:1,8 16:4
356:13 357:9,18	checking 4:8	300:5	218:11 236:6	224:19 225:21
418:8 420:13,22	chem 77:9 94:7	cite 134:14 239:15	304:5 330:16	226:2 237:11

304:21 307:4,5	372:21	326:20	complete 19:12	computer 42:21
319:16	combining 384:20	commitment 141:4	26:9 50:6 155:18	219:11 256:19
clearly 155:9 200:6	come 16:9 23:2	192:8	156:3 157:7	309:1 312:22
241:9 293:14	50:5 54:2,18	committee 326:22	177:13 201:20	336:17,20
311:13 312:6	80:19 81:15 86:6	327:3,5,9	269:21 313:15	concentrate 103:14
371:21 385:13	109:10 117:4	common 344:5,7	404:21 405:14	382:1
clerks 86:16	118:7,22 124:22	344:16,16,21	406:2,4 414:15	concentrating
clients 361:6	125:10 138:10,14	362:12	420:18,20	391:12
close 135:6 201:12	141:21 143:9	communicating	completed 91:10	concentration
296:8 297:8	147:6 178:20	56:1	91:11,14 123:1	241:3 246:15
318:15 321:8	198:11 207:14	company 42:18	167:16 175:16	265:15 318:18
353:2	216:8 238:12	comparable 137:20	182:4 187:1 272:7	358:18 363:6
closed 419:7	242:14 249:9	compare 68:8	272:8 412:11	364:3 365:3,14
closer 145:20	252:6 263:4	69:12	419:17 420:1	385:5 393:18
closing 15:18	274:10,11 286:22	compared 41:19	completely 55:18	concentrations
351:22	287:3 289:5	47:8 68:13,16	116:18 195:2	246:12 249:9
closure 118:22	301:21 319:17	69:9,20 76:2	390:14	255:15 260:7
code 336:17,20	330:19 333:3	185:11 189:9	completeness 16:11	284:8 294:12
337:13 347:9	339:15 347:12	237:20 295:9	16:12 17:16 39:14	318:16 367:19
coded 96:22 372:17	355:13 376:19	325:21 345:16	41:4,5,17,22	368:9 385:3
coding 96:17	388:22 396:1	349:9	43:14,22 44:10,12	concept 17:8 31:10
coefficients 325:10	403:6 404:4 413:7	comparing 58:1	44:18 45:3,10,11	104:2 346:11
347:11 377:7	419:7	71:11 107:4	46:21 117:20	concepts 362:21
cohort 84:12,12	comes 42:6 76:15	165:12	124:19 149:11	concern 20:1,19
126:1	129:21 136:4	comparison 23:13	155:4 156:20	28:6 97:12 112:3
collect 152:2	215:12 224:11	37:16 69:5,12	159:11 161:12,15	122:7 190:21
collected 51:21	245:22 309:6	71:3 149:2 150:17	163:10,15 166:9	215:8 238:4 282:3
66:1 104:22 105:1	316:2 332:7	150:19 156:5	168:17 169:14	concerned 96:21
105:5 165:15	354:12	166:1	174:10,18 175:1	125:22 132:14
166:2 184:4 201:7	comfort 303:12	comparisons 24:1	175:14 190:5	163:21 264:15
201:10 266:15	comfortable 21:21	399:3	201:13 382:4	340:11
369:18	22:15	compatible 26:13	completion 131:9	concerning 95:21
collecting 72:2	coming 116:22	compelling 241:6	complex 143:7	concerns 9:10
collection 145:2	131:11 189:8	291:18	223:9 257:8,15	22:13,16 157:5
collectively 336:13	246:7 253:2 304:8	compendium 55:13	265:6 303:8	191:1 314:6 330:4
color 57:21,21	305:1 341:6	compensate 386:9	313:21	330:8
372:17	404:17,19	387:22	complicated	concerted 43:5
colored 66:21	comment 56:7	compensated	372:14	370:4
224:9 373:3	73:22 222:19	349:14 357:17	component 408:14	conclude 332:16
column 48:2 51:17	225:4 243:9	384:19	408:14	421:2
201:1,4 241:2	388:21	compensation	components 268:3	concluded 307:21
277:1,6 310:21	commentary 215:4	259:6	337:3	320:5 321:9 324:3
316:17 322:13	comments 118:21	compensa	composite 323:3,6	421:9
372:20	220:5 225:18,22	272:9	composition 197:9	concludes 327:5
columns 23:4 218:7	279:16 387:3	compiled 166:2	280:21 292:6	conclusion 74:11
228:2 280:20	403:7	395:7	comprehensive	76:10 122:16
311:8 317:12	commissioned	compiling 65:11	201:16	288:8 304:6

Neal R. Gross \& Co., Inc.
(202) 234-4433

Neal R. Gross \& Co., Inc.
(202) 234-4433

322:19
counted 223:15
counting 192:4 358:20 359:3
couple 8:20 30:10 84:3 145:9 151:12 214:3 216:14 221:18 222:2 223:1 225:18 226:4 232:2 247:15 266:21 268:22 280:3 298:19 304:12 307:8 309:8 315:16 316:11 322:3 338:10 362:21 408:6
coupled 325:21
course 13:21 25:22 44:13 50:16 81:22 94:12 167:2 197:4 221:4 243:10 245:8 263:6 288:17 295:3 307:2,12 310:9 322:18 328:4 369:12 391:18
COURT 385:17 cover 15:8 16:5 208:11 216:18 274:17 305:18 306:21 342:17 358:13
covered 125:2
145:20 172:20 244:3 245:4 246:22 247:16 251:9 262:11 361:17
covering 146:4
covers 265:6 316:16 320:10 336:13
coworker 16:7 17:2 17:2,10,12,22 18:21 19:2,6,8 22:4,6,21 24:12

26:12 28:13 30:13 30:21,22 32:9 33:19 35:22 36:4 37:6,7,8 39:15,20 42:2 43:15 44:17 44:19,21 45:1
52:16,17 53:16,22 54:9,19 55:2
61:21 62:18 63:21
65:8 66:10,16
67:3 70:12 71:16
74:2,12 75:1,9
76:2 78:13,18
80:2 81:2,12 82:2
82:7 85:4,12 86:5
87:15 90:1 93:8
93:12,17 106:7,8
106:14 107:5
112:14,15 113:4 120:10 121:11,18 131:13,13,21 132:11 135:16 136:9,13,13 149:9 150:4,5,10 157:1
co-authors 313:21
co-worker 215:9
221:22 231:7,8 361:10 386:7,20 399:18
crack 325:10
cracks 336:10
345:9,19,20
create 55:12
364:19
created 94:15 333:9
creating 302:7 391:21
credible 272:16 273:17 329:11
criteria 140:20
150:8,9 202:3
211:10 214:4
223:4,10
critical 272:18
criticism 160:17
criticized 172:3
critique 305:4 418:12,17
CRL 239:12
cross 111:17 407:9
crosses 28:4,5
77:11,12
cross-section 139:5
crucial 296:19
crude 160:13 161:7
cubic 318:7 320:14 328:11 365:15
cull 188:8
cumbersome 90:12
cumulative 286:11
286:20 287:2
curie 330:22
curies 305:3 307:17
307:22 308:7
313:8,14 324:4,13
326:4 329:6
338:21 339:1
357:3,3
curious 383:20
current 100:7
117:3 125:21
145:11 338:20 339:5
currently 252:10
curve 53:10
cut 88:8 130:1
cuts 147:2
cutting 371:1

D 3:1
daily $226: 21$
$230: 16306: 3$
$336: 2358: 17$
$363: 2,17392: 20$
$395: 13,16396: 13$
$397: 4,16$
damage 101:14,19
$101: 22$
dark 376:6
dash $410: 20411: 17$
data $16: 13,14,16$
$16: 1717: 5,6,9$

19:12,13,13 22:7
24:12,19,21 25:3
25:11,16,19 27:1
27:5,12,20 28:7
29:6,14,17,20,20
29:22 30:1,12,18
31:11 33:4,8,14
34:3,21 35:2,10
36:1,2,12,21 37:9
37:9 38:10,13,15
39:14 40:1 41:4,5
41:7,16,19 42:4
43:14 44:5,22
46:7,10,11 49:5
49:20 50:2,4,8,11
50:20 53:19 55:8
55:13 62:19 63:11
63:18 66:5 68:6,6
69:18 70:18 75:3
75:10 77:4,14
78:13 80:18,19
82:6,10,15 83:9
83:13 84:8,9,21
87:12 88:17 89:15
89:16 90:18 92:4
94:17 95:10,11,16
95:18 96:17,21
97:3 98:4 99:5,20
102:16 105:13
109:17 110:2,3,6 110:20 111:21
113:12,14,17,22
114:2 117:20
119:9 121:1,5
122:8,18 123:5 124:8,10,18
128:13 131:13
132:5,9,11,22,22
137:1,3 138:19 139:8 144:15 145:1,1,4 149:7 149:12,16,18 150:11,12 152:1 153:18 154:6 155:11,11 157:12 159:1,11 161:12 161:15 163:15

164:19,22 165:15
166:1,1,4,4,6,9
169:14 170:18
174:10 175:5,14
175:17 176:8,19
177:10,13 178:19
179:5,21 180:5,14
181:3,6 182:8,21
182:22 183:6,18
183:18 184:20
185:16,18 186:10
193:7 194:10
196:22 197:1,7,7
198:19 204:4
214:10 218:19
222:4,4,5 224:11
241:18 242:7,13
242:14,16,19
246:19 249:8,8,13
249:15 251:18
252:18 253:13
255:3,3,12 256:6
258:17 259:3,8
260:21 263:16
266:10,15,20
267:2 269:3,19
270:8,13 271:16
271:22 272:2,11
272:12 274:9
276:15 281:4
282:19,21,21
283:14,17 285:5,7
285:22 286:6,14
286:17 287:7
297:13 298:17
299:1,16,17,20
300:3,5,7,22
301:11 302:7,11
306:4,5,5,10
312:1,2,6,8 314:3
320:22 321:22
328:1,7,21 329:3
329:11 330:1
332:8 333:1
344:13 347:13
348:19,20 358:17
359:1,17,19 360:4

360:8,18,21 361:1	databases 43:6	dealt 243:10,12,14	341:13	depleted 228:1
361:5,6,9,11,17	dataset 16:12 19:12	247:5 251:18	define 200:6	depletion 335:19
361:19 362:5,13	25:17 108:1,13	254:5	257:12 337:7	336:5
362:18 363:5	data's 413:20	debate 231:3	defined 233:1,6	depth 310:22
364:13 366:15	date 15:12 39:1	debating 200:3	308:8 363:11	derbies 370:20
367:14,18 369:18	42:14 131:9 170:3	decade 146:7	defines 317:2	derivation 252:17
372:4,15 375:1	203:15 216:7,10	decades 146:12	defining 230:13	derivatives 364:20
376:11,13,20	226:5 239:12	263:22	255:14	derived 249:16
377:1,20 378:11	282:9 284:21	decay 331:5 335:20	definitely 107:20	250:3 264:17
380:13,16,20,22	285:12 307:1	decayed 331:18	161:6 334:1	308:10 325:14
381:1 382:1,6,11	309:21 317:21	decide 47:18 148:2	definition 32:5	358:17
383:12 384:6,20	411:22	148:6 160:22	33:3 95:8 229:6	describe 18:20 19:2
384:20,22 386:8,9	dated 16:4 47:1	260:4 273:17	230:18 232:5	159:10 172:22
387:22 390:5,14	149:1 150:20	296:15 351:9	233:15 258:12	213:1 336:14
390:18,19,22	215:1 216:11	decided 16:19	definitional 233:11	386:21
391:4,11,15,17,19	304:21 305:4	39:13 244:11	definitive 257:21	described 35:5
391:20,21 392:3,4	410:21	261:20 277:10	degree 233:21	83:4 174:9,13
392:8,10,13,15,19	dates 309:8 316:6,8	360:3,5 361:20	313:6 341:18	206:9 251:17
392:19 393:4,7,7	317:12,16	405:15	357:8	335:15 368:16
394:20 395:6,8,11	daughter 315:3	decimal 67:17	degrees 167:3	401:3
396:19,20 397:6	daughters 315:14	decision 223:2,4	deja 39:16 393:9	describes 412:5
397:12,14,22	318:22 320:4	259:10 387:15	deliberately 404:9	describing 79:12
398:1,20 399:3,6	340:4,5,9 354:17	decisions 259:7	deliberates 84:4	359:20 414:5
399:18 402:11,20	day 20:12 21:2	272:10	delineate 108:16	description 305:21
402:21 403:2,18	24:14 25:5 52:13	declared 5:22 6:3	deliver 103:15	367:12,16 368:1
405:14 408:3	64:12 77:19 78:6	decommissioning	302:22	369:9,21 386:12
409:3 410:7,9,14	101:6 105:21	127:5	delivering 359:13	400:18 401:4,15
410:20,22 411:4,6	131:1 158:13	decon 250:20	delta 325:10	descriptions
411:8,16,17 412:9	181:15 190:15	decontamination	demonstrate 274:5	368:15 369:7
412:11 413:5,8,13	193:5 210:15	130:6	demonstrated 99:3	371:10 387:9,20
414:4 415:8,15,16	216:14 313:14	decreasing 318:10	185:8 241:17	descriptors 181:9
416:10 418:3	363:15 394:14	deemed 385:15	413:12	design 47:1,11,13
420:19,20	days 90:5 223:17	deep 330:5	demonstrates	80:3 187:3
database 27:10	255:13 268:7	default 21:21 22:10	49:18 274:2	Designated 1:23
42:7 45:10 46:3	279:3,6 338:10	24:5,6 78:5 79:5	demonstration	3:7
46:12 63:7,13	380:1 394:12,14	197:3,5,17,20	403:18	designed 16:11
76:20 77:17 96:9	day-in 272:1	221:22 268:17	denominator 69:3	43:21 44:11 71:14
96:13,14 132:15	day-out 272:1	292:11 348:3	denotes 410:3	257:11 320:13
134:14 137:21	de 355:15	351:18	Department 1:3	desired 149:12
138:20 140:2	deal 3:11 27:6	defaulted 268:9	94:18 143:21	despite 389:9
149:4,8 150:20	181:18 221:18	defaulting 254:6	dependent 103:16	detail 22:3,19
152:3 153:10,19	250:7 287:17	defects 309:10	158:10	25:18 102:11
164:9 165:8 166:3	314:8 321:16	Defense 143:21	depending 106:15	135:14 198:13
171:1 184:18	348:13 388:10	defensible 274:10	depends 103:2,3	205:12 221:11
211:11 214:10	dealing 155:10	deficiency 182:6,15	106:17 112:18	265:7,8 330:9
377:9 390:15	180:6 259:13	183:14	275:20	338:13 358:13
404:21	deals 303:6	deficit 325:20	depicts 320:19	401:2 402:19

Neal R. Gross \& Co., Inc.
(202) 234-4433

403:14 419:3	285:22 286:2,2	direct 169:18	discussion 40:19	337:16,21 338:21
detailed 178:11	347:11 384:18	240:22 249:10	46:9 60:17 86:7	339:6 350:15
182:7 186:18	different 16:13,20	315:4	147:13 160:16	386:19
368:1	28:15 35:5 40:21	directed 279:17	197:21 214:8	documentation
details 133:12	43:3 49:20,21	direction 73:18	279:10 296:22	256:1 299:7,10
145:16 203:1	61:22 62:2,18,19	74:15,17 160:4	333:3 359:5,12	documented 225:9
324:9	63:21 72:9 76:1,1	398:22	384:11 388:15	255:12
detection 104:1,3,6	79:2 87:15 108:11	directly 253:12	389:17 392:2	documents 99:12
104:7,15	108:12 127:5	279:17 316:2	discussions 367:21	240:16 266:11
detector 348:20	141:1 147:2	344:7 356:19	DISEASE 1:5	283:20 322:3
determination	161:15 163:16	disagree 92:21	disequilibrium	352:19
106:12 155:13	164:4 166:21	141:18 305:7	310:16 323:11,14	DoD 143:12,19
223:11	167:3 168:8 177:1	352:2	323:20	144:12
determine 20:2	184:14,22 185:6	disagreeing 249:3	disk 411:22	DOE 2:12 7:7,13
47:3 54:8 100:1	186:21 189:7	disagrees 305:5	disparity 263:13	16:3 132:13
110:14 175:17	195:3 197:21	discern 242:3	disposed 248:10	192:19 222:2,15
195:4,5 302:7,11	198:1 202:17	disclosed 267:4	distribute 10:21	223:2,21 224:11
329:9 351:8	226:3 252:6 267:9	disconnect 9:3	358:1	227:6,16 229:5,21
determined 25:7	270:2 274:20	disconnected 8:12	distributed 13:8	230:8 233:18
166:3 223:6	279:14 282:22,22	40:12	295:14 385:6	236:2 238:20
277:19 356:1	292:9,9 298:1	disconnects 98:1	distributing 13:7	239:2 240:1,2
determining 225:5	300:5 312:7 323:1	discover 360:20	distribution 20:10	242:14,17 249:8
361:11	361:6,22 363:13	368:5	23:6,22 25:7	253:8 257:2,3
develop 17:13,17	363:19 365:10	discovered 409:22	26:10 28:3 29:22	269:14 283:7,18
114:14 124:11	367:7 368:14	discrepancies	30:2,5 82:4 85:22	301:16 307:3
137:11 139:13	369:8 370:5	222:17 224:2,21	86:11,13 87:17	392:13
141:8 325:7	372:21 375:18,21	224:22 226:3	109:4 130:17	doing 17:19 36:11
developed 18:3,4	377:11 381:12	263:19 270:1	217:7 243:20	55:22 70:3 72:2
19:3 131:14	386:22 387:20	discrepancy 226:11	249:16 269:16	89:9 97:15 117:10
149:14 220:3	390:2 394:12	233:15 262:21	391:4 400:10,12	123:16,16 128:22
292:12,13 300:16	401:21,22 410:6,6	discuss 9:10 13:1	401:18 402:9	145:8 158:11
329:21 336:21	414:19	13:17 15:3 18:15	distributions 20:17	162:8 163:13
developing 96:19	differentials 336:2	32:17,19 33:2	401:22	175:12 184:13
132:10	differently 107:17	61:6 78:19 102:6	distrust 270:11	190:10 194:6
deviation 20:13	difficult 97:5	102:7,10 115:14	disturbed 313:5	195:10 207:7
25:21 28:1 29:16	115:21 209:3	121:10 154:20	disturbing 364:21	242:11 283:6
58:10	258:20 347:17	198:12 220:16	divide 364:4	354:2 378:19
Dexterity 61:17	diffusion 244:13	221:14 376:11,15	divulge 13:22	394:10 408:11
diagnosis 39:1	245:15,22 246:5	discussed 21:10	doc 174:3	DOL 7:7
89:16	253:22 266:7	46:8 61:11 89:18	document 16:2	dollar 142:19,19
difference 179:1	284:19 289:13	117:3 133:9	133:19 134:22	dollars 144:2
180:1 194:3 250:1	313:22 324:22	135:16 152:15	135:20 136:4	dome 310:6 316:15
276:3 312:6	325:4,9 329:21	220:17 352:22	148:22 151:3	318:9 319:21
313:12 325:3	330:5 334:15	399:13 419:3	152:20 165:4	320:17 328:2
327:12	347:10	discussing 9:22	254:10 255:1,18	333:7 335:8
differences 72:18	dilution 252:10	101:17 117:5	271:14 296:19	336:10 339:22
222:10 225:2	diminishing 188:3	161:8 295:19,20	306:1 307:2	340:13,18 341:4

Neal R. Gross \& Co., Inc.
(202) 234-4433

341:16 342:3,6,8	414:6	56:5,10,19 59:1	160:3,9,12 161:13	253:15 254:3
345:4	doses 17:3,3,20	59:14,16,18,19	162:7,17,22 163:3	257:20 258:3,14
domes 309:15	42:11 64:1,2	60:1,4,8,21 61:18	163:6,8 164:1,3	258:21 259:12,16
314:21 315:5,19	80:18 81:16,16,17	64:2,3,5,6,8,10,11	166:13,17 167:2,8	260:2,4,12,19
320:7,8	85:4 102:19	64:12,16 65:2,12	167:14,18 168:11	261:16,21 264:6
door 176:17	122:20 210:9	65:19 67:11,14,19	168:18,22 169:5,6	268:11,21 269:11
dosage 349:15	215:3 226:8	67:21 68:2,4,5,10	169:7,10,17,22	270:4 272:19
dose 19:10,22	274:11 294:4	68:15,18 69:1,4,6	170:2,3,9,13,16	273:13 274:4,14
20:18 30:6,15	326:9 327:10	69:11,14,20 70:1	171:5,10,15 172:7	275:14,17 276:1
33:20 37:17 38:6	348:22 350:12	70:4,6,14,20 71:1	172:15,19 173:2,4	279:8,18 282:4,17
38:16 41:8,12	351:10 356:22	71:18 72:1,20	173:5,7,11,18,22	283:21 284:14
53:20,21 54:20	359:1,2 371:13	73:2,13 74:19	174:6 176:12	288:19 289:2,3,8
82:8,18 84:5	378:1 399:16	75:12,16,19 77:7	177:8,16,20	289:17 290:10,15
89:12 91:10,12,13	403:22	77:8 79:3,6,7,16	178:21 179:16	291:4,6,13,15
91:19 93:16 94:15	dosimeter 187:8	81:5,7,8,10 83:15	180:2,16 181:10	292:15,17,20
103:11,15 109:1	dosimetrically	83:17 84:2 85:1,2	182:2,9,10,14,19	293:2,12,20,22
123:1 126:2	275:14,18	85:7,16 87:2,3,5,7	183:10 184:7,11	294:16 295:3,6,11
129:22 156:20	dosimetry 16:7	87:9,19 88:6,8,16	184:13,21 185:1,3	295:13,15 296:9
168:11,20 175:12	197:7	92:11 93:10 94:4	185:4 186:7 187:4	296:18 298:2,5
175:15,18 176:11	dots 360:14	95:5 96:1,5,8,14	187:7,12 188:1,16	302:22 303:10
177:18,21 178:9	doubled 244:20	97:4,20,22 98:2,7	189:16 190:9	304:14 305:15
182:3,5,12,19	doubt 53:7 73:2	98:9 99:13,16	191:20 192:1,12	306:17,19 307:7
185:19 186:4,13	377:4	100:14,18,21	193:14 194:4,11	312:13,17 324:19
186:22 192:1,15	downloaded	101:9,11,16	194:15 195:17	326:11 327:13,14
193:20 194:10,10	256:18 390:19	102:13 103:2,22	196:17 198:16	327:21 329:12
197:13 210:1,2,3	398:3,5	104:12,13 105:17	199:4,6 200:9,9	330:21 331:7
210:3 214:14	dozen 212:12	106:1,4,9 107:19	200:19 202:1,5,14	332:22 333:21
215:10 225:4	Dr 4:14 5:19 6:15	108:3,7,14 109:20	202:18,21 203:2,5	334:4,8,10,11,14
226:14 259:17	6:18 7:12 10:9,13	110:10 111:8	203:8,13,21 204:5	334:19 339:18
267:7,10 271:7,20	11:18,22 12:4,12	114:8,10 120:18	205:19 206:4,8,15	340:15,20 341:5
272:7 294:7,12,22	12:19 13:2,10,12	120:21 121:9,14	207:8 211:3	341:10,12,14
295:9 301:17	13:13,19 14:3,6	121:15,16,18	214:22 216:9,11	342:2,15,21 343:1
302:9,12 310:5,7	14:17,20 15:16,22	122:4,5 123:12	216:16,21 217:10	343:2,7,15,17,19
315:12 316:18	23:1,14,18 24:2	124:2 128:4,10	217:13,18 218:2,5	343:21 344:1,3,19
317:6 319:20,22	25:10,13 29:5,8	129:6,14,19 130:7	218:9 219:20	345:2 346:5,12
320:16 321:1,7	31:8,14,17,21	130:13,15,16,19	220:2,7,10 221:1	347:1,4,8,9 349:8
326:17,21 327:2,6	32:2,7,21 34:7,11	131:8,14,21 133:4	221:16 222:21	349:12 350:21
328:2,15,18	35:20 36:14 37:4	135:9 136:21	225:19 230:21	351:11,15 352:3,9
329:16 332:13	37:5,8,10 38:2	137:13,22 138:21	232:1,18 233:10	353:21 354:6
335:9 339:21,22	39:8 42:13,16	139:4,12 140:11	234:7,15,17 238:2	355:22 356:17
340:10,18 341:2,3	43:4,10,19 45:18	140:18 141:11,15	238:7,14 240:21	357:5,6 371:14
342:3,5,13 346:2	45:20 46:2 47:15	142:14,21 143:3,8	242:11 243:2,6	373:12,17,20
346:3 348:15	48:1,6,8,11,14,18	144:16 146:18	246:6,9,16,22	374:2 404:2,8,16
349:16 351:5,17	49:2,3,7,12,16	147:19,21 148:4,9	247:2,4,9 248:18	404:19 405:22
352:16 355:3,7,11	51:9,12,16 52:1,4	148:16 154:1,4,8	249:2 250:21	406:8,11,15,21
359:21 361:12	52:10,14,15 53:9	154:11,16 155:1	251:3,11 252:1,16	407:4,8,16,21
362:13 377:5,6	53:13 55:3,5,6,9	157:11,21 158:14	252:19,21 253:11	408:17,22 409:11

409:15 413:22	396:20,21,22	efficient $33: 13$	emanation 330:6	entered 110:20
414:9,18 415:3	398:1 399:3	83:16,18 108:2	341:6	175:5,6
416:3	400:17 401:5,14	211:5,8 276:8	embedded 21:22	entering 332:20
draft 16:5,10 164:9	403:10 410:6,9,19	efficiently 128:22	embeded 280:1	enters 332:12
384:13	410:21 411:12,14	346:1	emerged 269:1	ntire 11:3 14:5
draw 76:9 181:4	411:16 412:3	effluent 287:7	359:15	21:18 99:6 100:6
214:9 250:19	415:19 416:1	effort 43:5 123:17	emerges 57:7	111:1 229:13
drawing 45:5 56:2	DWEs 368:17	141:9 160:20	Emily 2:11 7:4	241:10,14 270:7
67:5	382:9 383:5	162:18 163:5,6	10:16 13:3 14:6	273:6 323:21
drill 145:2	391:22	172:22 223:21	emission 99:10	363:17 365:17
drive 133:16		236:2 266:16	emissions 305:1	366:7 367:17
134:16,22 146:21	E	370:4 380:5 408:9	307:16 309:18	382:9 383:6
151:15,20,22	E	408:15 409:7	emphasize 313:17	404:11
152:6 153:10,20	earlier 37:2,3 80:11	eight $21: 13$ 26:18	emphasized 385:12	entombment
359:18 360:19	112:1 180:19	27:8 38:14 51:19	empirical 328:7	329:19
408:2	184:15 251:17	89:20 150:1	344:13	entry 392:19
driven 3	276:8 312:2,9	186:11 210:15	emplacement	environment
driver 295:12	328:15 368:17	227:14 235:5	322:2 323:15,21	106:16 321:14
drop 186:3 210:5	earliest 254:20	314:9 318:4	324:6 331:12	332:21 335:4,16
343:10	279:6	363:16,16 367	employed 365:19	336:1 341:20
dropped 166:10	early 96:18 187	393:12 394:9	368:8 369:2	349:1
328:18	196:5 208:11	406:9 417:10	employees $7: 3,6$	environmental
dropping 43:16	223:17 232:12	eighties 212:13	56:14 112:8 126:3	106:15 348:8,10
drum 229:10	255:12,13 256:2	245:1 254:13,16	150:5	349:19,21
DS 277:19	262:17 266:5,10	254:17	employment 90:4	envision 19:9
due 107:9 215:15	268:7 279:3 297:3	eight-hour 394:4	130:3 390:16	EPN 365:14
313:12 335:20	299:1 308:13	either 62:16 98:1	enclosed 311:8	equal 104:6
duplicated 152:6	349:7	106:13 134:20	ended 39:22 125:12	equation 344:9
duration 100:6	earth-shaking	135:10,11 153:20	323:16,18 332:5	equations 337:12
241:10 379:7	71:19	159:14 294:5	379:4	quilibrium 311:11
durations 90:4	easier 372:18	308:22 312:22	ends 263:9	311:14,18 321:18
dust 364:22	383:15 416:13	373:7 407:19	Energy 94:19	321:21 322:17
DWE 306:3 359:19	easily 165:7 337:9	elaborate 105:1	enforce 283:8	341:20
360:12,16,20	easy 88:21 $128: 1$	163:14	enhanced 333:6	equipment 288:4,5
363:1,1 364:1,12	143:4,	electronic 11:19	enlightening	378:14 379:9
365:6,12 366:20	economic 248:9	45:10,22 46:3	369:22	equivalent 143:20
367:15,17 368:16	editorial 147:12	149:21 153:7	enormous 50:2	174:15 320:10
368:19 369:15	effect 47:16 79:13	192	360:2	346:2
371:4,19 372:17	150:4 221:22	element 71:6	enriched 21:3,5,14	era 362:15
374:6,8 375:4	295:20 333:4,9	197:14	224:16 227:22	error 258:8 265:10
376:1,22 381:8	336:3 345:21	elements 236:22	246:3 247:22	325:1
382:8,15 383:5	effective 339:8	eliminate 43:18	248:2,8,9 251:1	errors 147:8,10
385:13 389:12	effectively $28: 2$	129:17	enrichment 22:14	escape 165:10
390:4 391:17	296:17	eliminated 150:3	197:9 216:1	escaped 321:11
392:14,15,19	efficiency 93:13	eluent 281:2	ensure 175:5	332:3,4,17 333:11
394:14 395:8,10	110:7 318:15	email 217:1 218:14	entail 378:15	especially $57: 19$
395:21 396:15,19	320:11	253:16	enter 88:21 343:11	254:16 262:17

294:14,16	eventually 34:21	392:15 410:20	existed 323:14,20	271:2 272:1 306:4
essence 320:6	34:22 160:16	412:6	exists 108:11	315:5,19 318:19
331:16 355:13	everybody 3:18	excellent 330:10	270:14 407:12	318:21 320:21
essentially 37:9	8:20 9:15 10:6	exception 30:13	410:3	354:14,16 358:17
39:2 112:11	14:10 42:20 58:6	244:5 312:2	exotic 104:19	360:22 361:5,14
165:14 166:1	60:6 198:13	362:14	expand 232:6	363:2,3,17 364:7
232:9 290:5	199:13 230:9	exceptions 241:20	expect 71:22 72:20	364:15 368:12
319:22 320:3,10	280:13 302:17	excerpt 24:11	74:9 81:3 94:6	369:7 371:9 373:5
320:15 322:16,17	evidence 35:16	excess 319:16	107:4 120:3	386:4 387:1 388:2
323:10 328:16	84:16 85:12	324:4,17	124:17 172:12	392:21 395:14,16
332:15,18 333:22	231:14 260:7	excessive 359:17	201:15 280:5	396:14 397:5
339:4 340:1,12,21	325:22	exchange 226:9	expected 204:14,18	401:16
345:22 355:4	evolved 131:20	exclude 287:4	313:11 342:11	exposures 17:22
357:12 358:7	exact 327:4 358:7	315:21	expeditiously	19:15 33:18 53:3
373:3	exactly 36:14 54:1	excluded 286:21	198:21	58:20 59:4 67:1
establish 288:16	55:3 60:1 87:19	excreted 24:14	experience 167:15	84:14 85:21 86:14
established 137:12	98:7 104:8 122:4	100:22 102:22	320:1	99:10 271:10
170:20 251:21	130:11 197:8	excreting 100:3	experimental	306:7 315:7 368:7
estimate 100:9,10	198:7 213:1 214:5	101:5	201:16	385:15,20 387:9
294:6 308:3,7	234:1 306:1	excretion 24:13	expert 6:8 327:15	expressed 314:7
324:16 326:8	337:20 343:4	25:5 26:11,14	explain 116:20	365:12
385:8	348:16,17 352:9	64:3,5,11 65:3,7	305:10 310:2	expression 65:3
estimated 307:17	376:4 382:18	65:15,17 66:8,10	318:2 333:4	extend 231:22
324:14	388:9 401:4	66:14 67:2 70:10	339:19,20 357:19	233:19
estimates 196:7	examination 161:3	73:6 75:6,11 76:5	358:3,9 386:3	extending 223:22
estimating 323:9	173:3	77:19 78:3,5,14	explained 144:14	extensive 46:16
et 63:14 130:5	examined 150:1	78:18 79:1,4,20	186:17 200:15	160:6 233:22
249:17 285:18	153:9	101:1,8,15 102:2	206:20 224:22	266:14 359:5
316:16	example 20:3 38:2	102:4 112:7	269:2	392:2
evaluate 16:11	38:3 39:4 48:7,20	excursions 291:5	explains 318:5	extent 47:19
112:14 115:4	64:20 73:5 75:4	excuse 12:19 136:9	333:5	110:14 137:9,19
129:20 209:3	77:5 91:1 98:2	195:15 206:16	exposed 35:15 88:1	184:8 191:21
350:11	103:7 105:6	272:7 333:13	215:3 242:2	exterior 314:20
evaluated 60:15	107:12 143:12	executive 149:5	246:12,14 271:12	315:9
125:21 174:21,22	144:16 159:15	152:15 153:6	273:10,12 287:19	external 41:12
334:9	179:9 204:20	exercise 82:21	290:4,12 327:11	169:15 186:4
evaluating 16:6	241:13 244:3	138:6 142:19,19	350:13	196:8 271:2
165:11	248:15 267:13,17	188:21 287:22	exposes 273:18	externals 159:21
evaluation 92:13	271:11 272:5	288:10,11 301:16	exposure 18:3 29:4	extra 12:1 85:19
115:16 174:10	300:6,22 388:12	301:17,18,19	30:16 35:18 36:6	extract 393:1
307:13 360:22	389:2	exercises 74:4	39:1 41:11 45:17	extracted 149:7
361:5 368:12	examples 84:10	exhausted 279:10	53:4 77:22 85:6	231:17 235:9
369:7 373:6 382:6	181:13	exhaustive 245:3	94:19 96:20 100:6	275:5 278:5 397:4
382:11	exceed 272:16,16	Exhibit 315:21	100:10,20 105:9	extraction 261:14
evaluations 157:10	exceeded 75:8	319:3 320:18	108:17,20 109:3	277:7 278:5
evaluation's 356:4	Excel 133:18	344:11	114:14,15 126:1	extraordinary
event 107:21	151:12 164:20,22	exist 62:9	168:3 180:20	252:9

extreme 269:7	387:7	241:17 273:16	268:18 272:9	78:14 81:12 83:8
eye 72:4 326:18,19	facto 355:15	274:12 285:17	273:9,18 284:11	84:5 87:11 90:17
	factor 54:21 66:18	301:20 378:2	288:20 298:1	92:21 94:9 109:17
F	76:7,12,13,13	February 305:5	304:1 308:9	110:1,17 111:21
F 19:21 243:14	79:22,22 80:15	324:21	312:19 326:17	112:18 120:21
253:10 255:2	82:8 290:8 326:10	federal 1:23 3:7 7:2	327:6 329:16	121:2,6 124:16,17
300:15	336:15 338:18	7:6	357:16 410:21	124:21 133:1
fabrication 257:8	356:21 357:4	feed 149:9 246:9	fernaldhis20draf...	134:7,9,13 140:3
257:15	factored 393:22	264:7 278:15	151:4	151:17 159:4
face 26:3	factors 81:18	284:7 289:1,13	Fernald's 228:10	179:15 189:18
faces 132:12	188:12 197:16	feel 17:19 27:1	fewer 167:19	238:10 239:22
facilities 132:14	345:1	66:21 137:19	375:15	247:18 256:18
208:19 232:7	facts 106:19	138:2 154:17	field 238:18,21	258:7 262:5
361:22 370:5	factual 56:1 67:6	270:12 280:15	239:4 253:10	270:15 297:20
375:10 376:14	fail 258:4,14	288:3 294:4	262:3,10,12	338:7 352:20
378:13 381:13	fair 32:11,20	329:10 338:16	299:16 300:14	382:20 398:18,20
405:15	162:18 233:21	371:5 409:12	fifties 275:1	415:9
facility 29:15	301:12	feeling 212:3	figure 93:19 140:14	finding 109:14
189:15 360:15	fairly 71:7 201:16	feels 403:5	357:2 394:22	176:8 217:12
363:5 365:5	201:20 207:18	feet 318:7 320:14	fil 182:22	222:3 238:17
367:12,16,17	247:15 249:22	328:11	file 41:6 70:18	249:15 287:18
381:14 382:10,12	280:9 346:1	felt 157:7 241:21	150:17,22 151:3,8	307:10,11 308:1
397:18 400:14,15	377:22	376:12 397:12	173:6,7 183:2,17	findings 183:5
400:22 401:6,15	faith 283:11	Fernald 1:10 3:4	183:17,19 214:11	220:4 221:17
402:3	faithfully 46:11,16	3:22 4:15 5:22	214:13 410:20	226:4
fact 18:16 21:9	137:3,5	6:4,6 7:22 9:16	412:5	fine 15:22 144:9
23:7 24:15 26:13	fall 30:5 94:10	16:7 34:1 37:15	files 45:12 148:21	152:8 213:2 221:6
33:12 36:9 49:3	121:3	37:20 47:4 86:22	149:22 150:1,3,7	297:11 419:8
56:21 62:9 65:14	falls 245:19, 20	91:9 94:13 118:18	150:8,13 151:11	finger 61:14,15
95:14 112:9	familiar 8:22	149:10 152:20	152:16 153:2,7,9	finish 22:18 41:3
116:20 134:16	262:14 351:20	168:1,12 169:12	153:11 156:18	75:16 118:2,6
146:8 158:2	far 39:18 51:16	169:20,22 170:5	157:2 159:8 164:5	327:22 409:6
175:17 177:13	95:20 167:22	175:13 178:16	166:7 171:4,6,12	418:19
188:18 221:12	185:15 267:1	186:15 187:9	171:16 192:18	finished 17:18
222:16 225:14	316:22 330:11	189:9 192:15	411:8 418:7	118:8 329:2
226:20 233:14	340:10 382:5,22	193:18 195:22	fill 36:5 37:2,2	fire 190:8
236:10 243:19	390:9 419:21	196:2,22 199:20	filled 200:20 325:8	firm 140:15
252:3,14 260:5	farther 227:7	215:4 222:12	fills 138:6	first 7:3 18:20 19:1
261:6 263:6	382:20	223:13 224:10	film 183:18 191:15	19:18,19 25:15
278:19 287:16	fashion 96:10	226:10 227:18	207:5	28:6,18 30:7,9
297:18 308:6	97:15 208:4	228:4,5,7,16,20	filter 287:7	39:1 63:4 64:22
315:13 316:12	311:21	229:8 230:3,20	final 202:4,9	113:7 116:13
325:21 326:18	fate 283:7	231:15 233:3	finally 211:14	146:19 182:20
328:9,14 331:11	Faust 2:5 5:12,12	236:18 243:5	320:7 368:3,10	195:22 204:21
340:16 341:20	favor 385:9	244:15,18 255:21	370:11	214:2 218:20,22
342:9,10 355:1	favorable 32:9	262:7,22 265:1	find 10:7 28:13	221:18 223:8
356:3 380:13	54:10 71:17	267:1 268:4,13,13	32:5 34:6 62:15	226:4 242:5 252:4

Neal R. Gross \& Co., Inc.
(202) 234-4433

254:4,9 257:10	344:18	foresee 39:6	406:7 416:17	122:3
260:4 261:20	flows 257:13 337:2	forget 189:13 282:8	417:19	F-1 243:14 247:18
271:9 275:7 296:3	339:11	327:4	fourth 317:17	G
304:4 316:8	fluoride 248:4,7,11	forgot 165:10	four-page 24:11	G
317:16 326:6	251:1 370:10	forgotten 104:8	fraction 29:19	G 3:1
358:9,14 359:15	flurry 379:21	350:8	36:10 40:1 42:12	gamma 237:17
359:18 360:13	flush 413:4	form 137:5 217:2	162:19 273:8	279:4 281:22
361:15 369:2	FMC 315:18	248:2 278:6	290:1 378:17	282:10,14
372:19 376:20	FMPC 149:3 150:5	329:11	frame 116:14	Gantt 176:13
391:22 398:2,4	150:19 152:21	formal 115:12	211:18	gaps 107:6 108:5
414:19	284:10 411:10,14	135:19 136:4	frames 146:4	159:14 160:2
fiscal 228:5,8	focus 129:3 131:19	220:14,18,21	framework 74:7	203:19 336:12
fission 22:9 275:7	169:18 257:14	231:16 305:22	frankly 140:5	345:19 403:3,15
276:7 280:22	299:12 361:21	formalize 174:13	252:12 253:1,19	405:21
281:20 282:1	focused 257:7	formalized 177:5	270:14 344:12	gas 320:11 389:20
286:3,8,10 292:2	foil 333:8	formally 296:8	free 154:17	gaseous 244:13
292:3,12 293:1,9	fold 387:14	303:3	frequency 47:5,7,9	245:15,22 246:4
293:10	folder 149:1 152:19	format 135:19	204:18,22	253:22 266:7
fit 37:3 269:15	396:21,22	former 7:17,22	frequently 59:11	284:19 289:13
fits 391:4	folks 50:16 58:8	formerly 314:21	181:1	gaskets 309:17
Fitzgerald 2:7 6:9	63:7 127:14	forth 10:1 14:12	front 13:4 51:13	gathered 232:10
6:9	146:20 192:17	116:12 131:12	205:8 230:11	gee 115:19 122:17
five 3:9 13:9 39:3,4	193:15 303:21	200:4 224:4	249:21	general 6:7 17:8
50:4 81:5,8,19	305:3	225:15 228:16	fuel 236:22 257:15	18:15 36:1 47:3
84:19 140:3 150:8	follow 52:2 119:8	297:4 316:21,21	fulfilled 114:22	241:18 303:7
169:3 196:6	119:15,21,22	374:21 383:2	115:5	306:5 363:7 365:1
218:20 227:3	120:2 178:11	forties 232:12	full 28:2 82:4 86:10	365:4,7 373:11
248:4 253:2,21	179:21 193:7	forward 36:13	87:16 109:4	374:11 375:8
269:4 311:22	194:7 293:13	156:13 176:14,20	130:17 196:7	384:9,18 386:15
312:14 329:5	300:11	190:1 202:9 403:8	fully 55:17 123:17	389:10,19 391:1
350:5 375:12	followed 221:5	418:10	125:2 379:4	391:10
fixed 237:19 400:4	249:15	found 38:10 77:10	function 28:9 49:22	generalized 336:19
flag 88:7	following 313:4	77:18 125:1	functions 62:16	364:6 405:16
flagging 350:6	314:16 318:13	155:20 181:13	127:16	generally 21:15
flame 245:20	339:21 388:9	190:6 241:8	fundamental 54:3	210:15 241:19
263:21	follows 241:8	368:12,18 376:8	270:11	generated 299:7,8
Flats 39:19 43:8	follow-up 112:13	foundation 26:20	Fundamentally	302:10 331:5
155:7,10,15,20	297:14	four 10:17,21 11:1	336:5	generating 232:22
159:6,11,19 160:4	footer 216:17 307:1	12:21 13:3 24:8	funded 329:14	233:4 266:1
163:13 171:19	force 273:9 336:9	27:12 50:15 54:21	furnace 364:17	generation 240:10
172:8 181:13	forced 366:1	57:5,5,10 81:18	370:20	277:8,15 278:4,11
189:12 190:4	foregoing 40:6	99:4,5 157:14	further 39:10 72:7	278:21
flip 352:19	118:13	158:5 173:21	314:5 320:16	generic 301:6,7
floor 210:11 345:4	foreman 209:22,22	202:16 311:21	350:11 355:2	geometric 20:12
flow 240:10 260:21	210:4	312:13 370:17	Furthermore 89:13	25:21
302:1 318:6,13	foremen 210:9,9,11	372:15 376:18	315:15 327:8	getting 26:22 71:1
335:10 337:9	210:14	390:13,13 397:10	future 15:12 96:19	71:2 116:8 122:11

154:5 156:22	77:16 78:16 80:5	61:1 67:22 113:6	210:13,17 212:21	214:20 238:2
169:19 170:17	80:7,10,10,13	132:5 156:6 157:4	214:13,21 215:17	240:13 247:8
188:15 198:7	83:8,20 84:5,19	157:16 245:21	216:3 218:10	252:22 259:9
220:13 251:5,13	90:12,19 92:9,16	250:11 318:12	219:8,22 231:5	268:17 273:14
259:4 270:17	93:1 95:17 96:8	337:11 370:9	234:8 242:5 254:7	278:20,22 279:6,9
271:19 333:14	97:9 107:10 108:4	393:8,9 401:15	260:5,8 265:16	279:20 281:15
335:3 352:22	109:7,16 111:20	going 3:13 9:21	270:19 271:5	325:22 333:19
359:10 393:14	112:19 114:14	10:2,18 11:10	273:3 276:20	371:7 380:2
394:9,9	119:2,6,14 127:4	12:20 15:7 20:22	288:16 294:12	403:19 404:11
give 19:22 34:11	132:19 136:11,22	21:4 22:2,18	296:11 297:16	417:3
37:15 48:3 63:8	139:20 140:15	25:18 26:16 28:10	302:21 303:15	gooseneck 309:16
71:9 73:20 86:22	148:7 157:22	30:6,17 31:2,3,21	304:7 305:18	316:15 319:19
87:16,17 97:18	162:2 163:19	32:7,12,14,18,19	306:5 308:15,17	336:11 345:20
103:10 109:3	171:12,16 179:6	32:22 37:5 42:1	310:12,12 312:20	goosenecks 320:9
131:8 133:13	185:13 186:4	47:20 53:18 54:1	314:19 315:15	gotten 48:10 60:21
198:17 199:4	187:6 191:5,13	54:2,6,6,8,11,15	324:9 330:16	72:19 387:7
206:21 242:19	192:16,22 194:12	55:9 61:1,5 62:12	344:2 346:21	Grab 80:17
249:11 281:21	196:3,10 200:7	65:12 71:5 72:16	347:13 350:3,7	grade 381:20
306:12 346:14,16	211:19 214:11,15	76:9 79:9 80:3,21	351:8,9 352:13,15	gradually 237:18
365:21 388:11	214:18,21 217:4	80:22 81:1 82:21	352:17 353:5,7,13	278:3
389:2	227:14 242:15	83:5 85:14,15,19	354:1 355:20,21	granted 70:2
given 26:8 28:22	244:9 256:7 257:1	88:11 91:21	358:10 364:16	granularity 27:2,6
29:15,15 34:12	258:16 259:11	102:18 103:9	366:3,3,4,11,18	29:13 63:5 180:17
47:13 62:17 75:3	263:16 270:12	105:7,12 106:7	367:11 369:10	366:9 377:21
76:11 83:21 84:17	276:1 281:9	107:1 109:9,9,11	370:13 371:8,17	402:21 403:14
86:2 100:16 124:3	282:18 283:14	112:19 113:1,2	372:9,12 374:19	410:22
223:10 230:22	296:1,5 299:17	116:21 118:7,10	378:21 380:3	graph 57:20 343:21
354:4	304:13 307:8	118:12 119:8,17	381:20 382:19	graphical 57:16
gives 78:17 133:19	308:2 310:20	119:21,21 120:1,3	383:21 384:1	graphically 269:20
180:4 305:6 307:1	312:4 314:5,9	120:14 123:22	386:21 398:19,20	graphs 57:15 61:2
311:11 368:15	318:1 319:2	126:16 128:5	403:8,19,22	grapple 128:18
giving 27:22 67:6	320:18 322:12,19	130:6,10 132:21	407:22 413:16,17	great 3:18 27:6
301:5,8 342:13	326:13 327:17	136:14,19 137:3	414:6 418:10	71:18 154:11
glad 389:3	330:1,12 334:19	137:10 140:16,19	419:8 420:15,17	169:10 191:4
glancing 146:1,14	346:17 354:22	141:5,10 154:12	good 3:3 22:21	207:8 221:3
go 9:4 11:1 13:16	357:22 366:21	155:3 156:15	23:14 32:2,16	287:17 302:15
19:16 20:4 22:18	380:11 381:11	161:18 166:8	36:14 37:11 69:5	386:20 387:19
24:4,7 25:11 27:9	382:19 383:21	171:1 172:4,6	75:17 78:16 84:15	greater 22:2 91:11
31:19 33:13,15	386:20 387:19	173:21 179:15	85:15 109:5 115:8	91:15 123:3 243:4
35:10 39:10,13	390:11 392:11,20	181:16 182:12	130:8,9,20 148:16	273:18 357:14
45:20 46:6 47:13	393:15 398:21	188:20 189:22	148:16 157:2	green 249:19
47:17 53:15,18	403:20 408:2,17	191:13 193:17,19	162:18 174:3	Griffon 1:20 3:21
55:14 56:20 57:20	409:5,9 411:7	193:21 194:16	187:14,20 188:2	3:21 34:8 39:9
58:11 61:7 63:6	414:7 415:5,6	198:9,17 200:5	188:13 189:17	41:2 42:15 43:7
63:10,12 69:17	goal 361:10	201:17 202:9	190:16,22 195:11	43:11 45:7,19
72:7,13 74:17	goes 3:18 22:10	203:18 204:12,20	195:12 199:6,18	46:1,18 59:21
75:17,20 76:19,20	24:22 25:2,3 26:3	209:14,16,19	200:11 202:3,3	88:10,17 89:1,4

90:9,17 91:2,6	203:4,6,12,17,22	46:22,22 55:10	348:16 382:14	Hanford 222:12
92:5,20 93:5,18	204:10,16 205:4,9	65:4,6 74:7 82:20	384:4 385:21	223:7 224:14
94:5 96:12 97:2	205:15,21 206:7	83:19 84:3 99:17	388:4,14 389:22	226:9 227:10,17
105:15,19 106:3,6	206:12 207:9,17	109:3 118:18	390:11 403:16	228:4,6,10,12,16
106:17,21 109:8	207:22 208:5,20	124:15 130:18	407:10 415:11	228:19,19 229:8
110:1,12 111:4,18	209:2,10,15	131:1 133:10	418:9	230:2,20 233:9
112:12 114:3,18	210:18 211:1,13	136:17 142:4	guidance 398:18	234:2 236:1 237:8
116:16 117:17	212:2,15,20 213:6	160:4,6 166:11	guideline 138:5	239:4 240:11
119:4,12,14 120:1	214:1,5,12 258:16	175:4 199:21	guidelines 13:21	254:20 255:18
120:6,20 121:21	258:19 260:11	215:6 250:22	293:13	257:7,13,14
123:7,19 124:13	262:2,9,13,20	273:7 283:14	gut 138:2	260:17 274:18
126:7,11,19 127:8	263:3,12 264:10	291:21 296:1	guy 53:12,18,19	275:1 276:15
127:21 128:5,16	284:1,15,20 285:1	305:19 308:2	82:5 88:4 98:16	281:7 283:19,20
129:2,11 130:22	285:4,7 297:6,12	351:12 359:6	109:2 122:17	hang 186:5 275:9
131:5 132:2 133:5	298:4,7,10 303:2	406:12 414:1,20	guys 131:12 137:11	hanging 190:21
134:4,10,13,19	346:20 348:9	419:4	243:15	220:21 418:22
135:4,11,21 136:5	350:2 351:4,13,19	grouped 69:17		Hans 2:8 6:15,17
136:11 138:18	352:6,10 374:3	221:17	H	12:20 13:6 102:8
141:17,22 142:5	392:6,22 393:3,6	groups 31:3 45:15	half 58:15,16 72:20	169:6,7 196:17
142:13,17 144:8	393:20 394:1,13	62:4,5,15 79:20	72:21 104:7	198:16 304:21
145:5,9,17 146:9	394:21 395:3,10	249:17	212:12 304:16	305:9,20 306:16
150:21 151:5,9,14	395:19,22 396:5	group's 74:15,16	339:8 363:16	306:16 307:6
151:18 152:4,7,17	396:11,16,20	growth 331:22	369:2,13 418:15	312:11 325:8
153:5,15,21 154:2	399:10,22 400:5,9	GSB 23:4,6,8,18,20	halfway 405:3	327:19 330:10,14
155:2 157:20	400:15,21 401:7	GSBs 23:5	half-life 331:15	335:1,14 337:18
158:15,19 159:1,5	401:12,17 402:5	GSD 79:5,8 384:21	half-lives 331:21	340:15 343:4
159:9,20 161:9,14	402:13,16 404:15	402:10,11	340:5	344:6 350:5 352:4
162:15 163:17	404:17 409:17	guarantee 84:4	hallways 365:3	353:15 356:19
164:6 165:6 166:8	411:1,5,9,14	guards 86:18	hand $13: 14,20$	Hans's 325:19
167:5,13,17	412:2,13,16	guess 65:15 68:20	271:10 291:8	326:14 327:18
169:20 170:6,11	414:10 415:2	90:9 95:7 96:1	321:2 340:19	330:6 334:9,13
170:14 171:3,8,18	416:7 418:18	112:21 119:4,6	389:15	338:17 350:22
172:9 173:8,13	419:5,13,18 420:2	129:2,9 138:16	handed 13:2	356:19
174:4,20 175:22	420:6,18 421:5	139:7,14 147:4	handle 107:17	happen 53:17 54:1
176:5,22 177:6	grinding 370:6	153:5 154:4,11	263:19 279:7	80:21 337:10
178:1,7 179:2	grip 301:22	156:4 157:21	325:18 371:8	happened 85:18
180:4 181:8,12	gross 150:2 237:15	178:5 182:1	378:4	160:10 179:5,13
182:17 183:4	237:17,17,19	195:18,20 196:20	handled 241:11	180:13 274:17,20
185:21 186:8	279:3,4 281:20,21	207:9 209:5	246:19 291:11	301:20 332:6,13
187:2,6,10,16	281:22 282:10,10	214:17,20 221:16	handling 177:11	happens 28:7 56:19
188:4 189:11,20	282:14 287:8	231:3,6 235:4	handout 415:19	60:18 190:8
190:14 191:10,17	365:19,20	246:6 263:13	handouts 306:12	192:16 259:16
192:6 193:11	ground 406:15	264:10 271:19	358:2	367:1
194:1,9,13 195:11	group 3:5,20,22 4:2	280:11,14 284:11	hands 420:15	happy 109:7
196:13 197:22	4:4,6 9:16 11:22	289:18 291:16	handwritten 46:5	162:12 388:12
199:1 201:22	28:8,11 29:2,14	298:10,11 303:2	163:1,3	hard 42:10 45:21
202:2,7,15,19,22	30:4 33:11 44:4	304:4 339:18	hand-count 92:16	46:5,10 107:13

116:11 136:22	292:15 306:18	364:15 367:3	95:22 96:4 111:12	174:1 273:3
137:4 139:22	394:14 398:12	373:2 385:9 386:4	132:11 133:3	345:19,19
149:3,15,22	heard 40:20 154:14	386:8,17 387:16	137:2 139:8 140:2	human 1:3 97:16
150:19 153:8	210:21 280:2,10	388:1,2 393:11,18	149:4,8,12 150:11	98:14
180:15 184:17,19	280:18 296:7	395:18 399:15	150:15,20 164:8,9	hundred 241:16
185:11,14 187:12	hearing 137:2	402:11 420:8	165:13,15 173:3	253:4 413:19
214:15,16 241:22	184:22 251:12	higher 18:2 23:17	173:13 175:5	hundreds 27:21
308:22 309:1	270:11 281:5	45:16 54:2 58:20	180:14 184:18	139:1
312:22	294:1 298:21	62:7 66:9,16 67:2	214:10 390:15	hypothetical 34:9
Harry 2:9 6:21 7:1	heart 26:17 358:21	67:3 70:11 71:22	HIS-20_B_bioass...	
65:10,17 67:14	362:9	72:21 73:7 76:8	164:11	$\frac{\text { I }}{}$
68:10,11 95:6	heavier 336:5	76:13,14 78:7,22	hit 8:11 90:21	IB 239:6
113:11,13,15	heavily 12:4	79:14,21 80:1	223:14 232:22	ICRD 377:9
126:22 127:3	heavy 63:8 229:10	81:1,9,18,19 84:7	hits 147:7,11	ID 133:19 164:21
137:14,14 138:4	Hebron 1:16	85:21 109:3 110:4	hmm 73:5	Idaho 224:17
138:11 141:8,15	heck 87:16	112:1,7 180:20	Hoff 2:4 4:20,20	idea 48:19 71:10
143:5,5 154:4,8	held 303:8 386:6	242:2 248:6,13	hold 9:4,5 13:5	73:2 74:5 97:19
162:10 166:14	Hello 40:9 98:21	250:11,12 251:13	27:15 33:1 40:3,4	109:13 113:22
168:6 194:21,22	help 19:6 51:12	252:7 253:3 255:7	148:11 227:12	130:8 302:10
195:13 212:19	196:12 330:16	263:7 268:10	326:5 404:12	362:3,22 378:15
213:8,9 249:13	371:12 406:1	269:4 288:6,6	holding 283:4	381:6 382:4
250:5	helped 249:14	312:3 323:17	holds 33:6	identical 300:2
Harry's 212:5	helper 77:9 80:9	higher-end 29:3	hold-up 344:22	319:22 322:15
hat 186:5 275:9	helpful 73:18	highest 19:22 77:21	home 346:15	328:16 332:15
hate 67:17 143:4	108:10 124:1	84:14 87:22 245:4	honest 117:8	identified 2:1 79:18
haystack 33:10	126:17 165:17	247:17 254:6	honestly 117:1	102:1 107:5
hazard 294:21	194:14 406:11	286:14 321:7	326:11	164:14 216:4
HAZWOPER	helping 387:15	387:10,11	hopefully 10:19	244:6 257:3
127:15	heterogeneous	highlight 352:17	120:6 191:9,10	273:21 307:11
head 138:17 256:15	71:19 298:14	419:8 420:7	hoping 13:17	308:14 316:6
310:4,8 314:1	hexone 277:5 278:	highlighted 311:7	242:13	329:9 362:10
315:11 319:17	hey 8:10 329:3	335:13 419:6	hoppers 284:10	369:15 374:1
320:4,13 321:13	HHS 2:11,12 7:4,6	highly 105:7	hour 206:18 304:16	381:8 409:10
326:2 328:10	7:8	264:15 385:2	316:6,19,20 317:8	identify 3:16 8:4
332:5,12,20	hidden 27:16,18	highs 394:7	317:10,20 319:7	12:21 33:14 52:7
333:10 335:1,3,16	high 17:21 35:14	high-end 30:5	319:11 320:21	73:17 111:10
335:19,20 336:7	52:20 71:7 76:12	high-level 228:13	321:4,8 328:13	119:8 194:18
337:5 338:2 341:1	77:13 78:1 79:14	high-side 377:5	342:4,12 343:13	329:8 403:10
341:8 343:11	84:6 99:10 100:13	historical 99:12	355:8,12	identifying 122:22
345:22 354:2	101:19 125:12	222:10 243:10	hours 173:1,21,21	123:4 176:18
355:6 408:16	170:15 189:9	256:1 307:8 309:4	174:5 194:15	317:16
heading 236:7	224:16 245:6,14	315:17	210:15 318:11	iffy 288:11
health 1:3,8 3:6	245:17 247:15	history 16:8 21:18	328:12 340:3,7	ignorance 353:9
4:17 40:11 104:18	274:8 287:4	35:13 93:19	354:22 363:17	imagine 107:13
118:17 199:20	289:12 294:10	114:15,15 209:7	house 297:22 345:6	170:7 187:11
304:1 365:19,20	317:8 342:13	HIS-20 27:10 41:18	Howell 2:11 7:4,4	285:9 298:8
hear 113:11 242:9	353:13 363:22	46:12 76:20 95:13	huge 96:20 105:12	immediately 224:2

immensely 127:20
impact 267:6 273:4
296:11,14 302:8 302:12
impede 344:17
impedes 335:10
implement 31:1
47:16
implemented 59:22 60:2
implements 337:12
important 17:7,17
22:16 23:3,11
49:17 51:2 61:8
76:19 168:2 251:4
260:10 313:2
316:12,16 317:10
362:7 365:16
385:12
importantly 246:18
impossible 53:1
impression 231:1,4 405:7
imputed 79:8
incapable 278:17
incident 52:18 53:11
inclination 76:10
include 126:3
139:1 269:7
286:19 291:10
376:15 415:15
included 150:12 252:17 287:6
324:12 366:22
367:13 369:9 378:8 391:13 407:19
includes 192:19 215:10 385:4
including 274:8 301:13 309:15
incompatible 344:10
incomplete 176:9 incompleteness 177:10
incongruity 250:9
inconsequential 226:14 inconsistencies 155:21 221:18 222:6 incorporated 299:19
incorrect 292:20
increase 23:21 378:22
increases 384:20
increasing 384:22
incredible 290:10
incumbent 121:10
incurred 105:9
indefinite 354:21
indefinitely 340:22
independently 149:16 175:10
index 70:7
indicate 75:10 231:14 360:19
indicated 246:11 270:6 360:22 408:10
indicates 227:2 231:18
indication 70:8 287:8
indications 71:13
indicative 105:8 222:14
indicator 70:1,13 77:20
indirect 325:18
individual 26:1 27:2 31:20 41:22 45:11 75:2 94:21 97:3 106:19 128:13 155:10 157:2 164:20 171:4 183:6 185:7 185:16 195:8 265:19 267:11 373:7,9 374:7
individuals 30:20

42:12 89:20 90:5 206:22 207:1 369:5
individual's 70:18 95:1 272:2,10,11 348:2
indoor 341:20
infer 366:2
inferred 362:2 366:10
infiltration 345:10
inform 117:2 198:22
informal 204:7
information 23:16
24:18 27:11 38:17
56:1 67:7 68:8
72:2,12 82:2
83:21 94:20 96:20
111:11,12 119:17
119:18 142:9
218:3 221:2,13
222:18 231:17
238:4 259:10
260:18 264:20
271:8,10 285:21
322:1 324:11
328:6 347:21
358:7 365:21
371:5,6,11 377:17
378:12 380:3 387:7,8,14 403:1
406:18 408:1
410:20 414:12
informative 26:22 83:13
informed 387:6
ingested 21:2 272:17
ingestion 30:17
inhalation 19:11
30:16 306:6
inhale 103:3
inhaled 22:6 272:18
initial 276:21 318:18 368:17

372:8 initially 109:15 160:20 235:22 257:18 258:10 324:14 409:4 initiated 224:5 injected 237:12 inner 293:4 343:3 input 289:18 385:3 inputs $368: 16$ inquiries 242:8 inserted 234:5 252:10 inside 336:22 342:8 345:16 354:5 386:18
insights 397:22 insignificant 174:1 installed 309:17 310:1
instance 23:19
160:15 317:3
328:7 354:19
instantly 339:15
INSTITUTE 1:8 institution 358:19 instruct 207:16 instruction 47:13 instructive 171:2 intact 53:1
intake 17:3 20:11
20:17 22:11 24:6
24:7 26:5 36:6
39:5 52:8 64:5
65:14 81:15 90:1
101:3,4 105:2,4
105:12 165:19,20
267:12 271:17
272:3 385:3,8
intakes 62:6,7 64:2
110:22 111:3
259:8 267:17,18
270:22 298:18
348:3 349:16,17
404:16
intellectual 353:7
intellectually 356:8
intelligent 169:1
intend 130:14 200:13
intended 233:19 236:10 398:8
intent 244:18 294:3
315:10 383:10
intention 404:5
intentional 181:16
intents 215:18 381:10
interest 3:17 4:17
interested 44:17,18
195:20 333:14
interesting 40:19
112:4 115:21
209:19 210:13
364:9 366:21
367:22 368:19
369:12 375:9
394:6
interfere 9:6
interior 314:16
interject 194:17
198:3
intermittent 108:19
internal 16:6 17:3 19:10,15 30:16
38:16 94:19
169:15 196:7 359:2
internally 189:3
interpret 105:11
271:21
interrupt 269:10
interviewed 229:18
inter-comparison 165:22
inter-site 299:8
introduce 345:11
introduction 14:21
367:10
invalidate 397:15
invalidated 288:7
invented 104:19
inventories 86:17

inventory 233:2	346:8 349:19,21	47:10 49:21 62:2	128:2 130:8 133:6	324:7
244:20 261:4	350:22 351:7	62:16 74:5 76:21	135:8 136:17	J-19 315:20 316:3
326:2 330:18,19	352:1,5,7 356:2,2	76:22 77:3,3	153:22 161:11	J-28 314:11
342:7	356:18 357:5,6	79:19 83:9 84:21	169:5 180:18	
invested 136:1	358:22 359:10	85:1,9 89:14 90:3	194:16 195:15	K
investigate 115:4	370:1,13 382:3,4	90:6 92:22 94:10	198:4 199:4 200:5	Kathy 2:10 168:13
investigation 121:8	384:12 385:22	95:1 97:10,12	200:7 206:16	168:14 169:7
investigations	390:8 408:13	108:17 111:10	214:20 216:8,13	195:16 196:21
306:13	420:14	114:15 115:8	216:22 219:18	198:16 206:4,17
involved 159:10	issued 17:1 59:20	116:10 117:10	222:19 225:12	210:21
162:11 315:7	115:11 220:19	119:17 122:6,19	231:13 242:9	Katz 1:23 3:3,6 4:7
328:3 359:17	257:2 305:4	125:2 127:2,3,11	243:8 251:22	4:12,22 5:4,7,10
367:7 378:21	308:10 316:4	138:7 139:9 157:3	253:15 259:11	5:14,17 6:1,13,17
involves 316:7	issues 9:21 14:4	160:14 161:3	269:9 270:5	$7: 1,5,10,14,208: 1$
328:21	15:1 71:11 116	162:14 167:12,19	281:17 304:11	8:7,13,19 12:14
in-depth 196:10	119:2 160:22	167:21,22 168:3	305:11,12,16,16	12:18 40:3,9,9,17
364:11	215:2 221:3	180:21 184:6	306:8 308:10,13	98:21 99:15 118:9
In-tank 27	274:16 296:12,13	188:5 191:16	313:20 314:12,15	118:16 138:11
ionized 34	307:9 314:8 330:3	193:12 201:1	316:4 324:14	194:18,22 195:13
irradiate 103:8	356:10 362:9,11	202:17 204:13	325:16 328:7	199:9,18,19
irradiated 2	362:17 388:19	282:18 360:22	329:2 333:22	303:14,21,22
irrelevant 272:22	item 154:12 155:	361:5 363:4,12,13	334:3 346:6,13,14	380:11 398:9,14
273:2	228:8 355:20	364:8 367:16	366:12 379:2	421:6
Isaf 2:12	360:11 361:8	368:11 369:6,7	403:13 410:1	keep 9:9 56:11
isotopes 282:2,16	362:19 372:9	371:10 373:5	John's 118:21	60:14 70:17 71:2
293:4	373:16 386:2	382:6,11 386:11	12	74:19 79:4 112:7
isotopic 365:22	items 15:4 132:3	387:9,20 393:15	joined 305:13	128:12 141:18
issue 22:13 40:18	218:1 359:7,12,16	393:16 394:4	judge 32:10 73:11	172:1 212:21
41:9 43:12,16	362:8,9 373:6,10	396:1 399:15	judged 74:10 156:2	267:8 269:12
60:20 87:21 98:10	382:6 383:1 386:1	400:11,18,21	judging 413:10	294:19 309:9
101:10 102:12,17	386:2	401:4,15 413:2	judgment 27:3	311:5 340:21
116:22 122:5,14	iterated 223:6	jobs 45:16 93:7	73:14 85:8 147:5	346:18 352:11
126:6 130:11,13		94:2 110:14	148:11 155:16	358:11 385:18
130:20 135:15	J	112:18 113:1	185:17 204:19	keeping 115:8
160:15 161:5	J 309:7 31	114:5 120:8	207:14 208:13	351:13
170:17 177:10	329:7 332:9	124:17 125:4	223:14 347:15	Kentucky 1:16
185:6 189:1	Jennifer 2:4 4:20	127:4,7 205:7	judgments 50:17	kept 326:12
196:19 198:1	Jim 2:2 4:14 19:4	382:9	55:10 76:15	kerosene 277:17
212:22 215:7	48:15 94:7 99:18	Joe 2:7 6:9	291:21	key 10:16 11:5 22:3
224:7 228:18	102:21 109:18,20	John 2:5,8 5:19	judicious 87:20	275:8,13 310:15
232:21 233:11	182:2 190:3	6:11 10:4,7 12:21	July 227:20 239:12	kidney 103:13,15
238:15 240:21,22	215:20 232:1,16	14:13 25:9 47:22	316:11	kind 14:11 23:21
247:10 249:7	236:14 260:16	51:3 56:4 60:15	jump 26:17 221:8	31:1 71:12 73:22
259:5 261:1 264:7	263:14 333:19	64:14 65:10,17	221:13	74:11 83:1,3,9
268:22 301:11	Jim's 41:9 92:21	75:16,18 79:12	June 227:20 239:9	93:1 98:14 100:8
304:9 326:7,12	118:21	89:5 93:2 107:3	239:11 309:14	114:2 121:17
332:7 345:3 346:7	job 28:9 38:9,13,18	109:15 124:21	320:22 323:22	129:10 130:12

Neal R. Gross \& Co., Inc.
(202) 234-4433

138:4 139:5,18	101:13,14 102:1	188:5,10,10,10,15	399:2,4 400:20	larger 37:19
140:14 141:3	104:4,11,22 105:4	190:5,6,16,18,18	403:19,20 405:22	late 3:10 11:19
174:14 188:14	105:12 109:18	190:22 191:2	409:9 417:11	50:13
198:5,6,9,10	110:4,21 111:8,16	192:16 193:16	420:7	latency 38:21 39:5
200:16 246:2	112:2,21,22 113:9	194:8 195:19	knowing 195:21	89:17
285:21 287:21	113:20,21 114:11	198:15 201:13,14	321:22	latest 359:19
292:21 295:19	114:13,16 115:3,6	201:17,19 202:3	knowledge 85:17	Laughter 67:16
299:10 338:13	115:20,21 116:21	202:12 203:22	113:3 366:1,10	109:22 143:2
351:22 352:22	117:4,7,18,22	204:4 205:7 206:2	knowledgeable	144:3
362:4 364:5	119:15 120:13	208:7,12 211:6,17	229:17	Laurie 12:16
367:10 369:11	121:8,17 122:15	212:3,20 220:13	known 149:14	lax 97:16
372:3 375:8	123:5,10,15,22	220:20 221:9	252:14 263:7	layer 337:4
376:19 378:4	124:1,15,19,20,22	225:7,21 233:8	291:5 301:9	laying 414:12
379:18 381:5	125:6,11 126:5,10	236:11 239:16	knows 14:10 267:2	lead 65:11 72:13
382:3 383:20	126:13,16,18	253:4,20 254:13	K-65 10:1 306:21	73:17
385:21 389:13,18	127:15,17 128:22	254:16 258:21	309:5 315:19	Lead-210 310:17
396:9 399:4	130:4,4 132:6,14	263:16 267:9,21	329:19 349:2,20	311:8,9 322:13,16
414:10 418:9	132:18,22 133:2,7	268:1 269:21	350:18 353:18	323:4 331:14,15
kinds 72:9 226:3	133:9,9,14 134:20	270:14,18 271:3,3		331:19
285:14 330:7	135:6,15 136:22	271:5,9 272:5,16	L	leak 336:14,15
352:18	139:15 140:5,15	272:22 273:6,12	label 113:18 254:21	leap 339:20
kinetics 313:22	140:21 141:3,9,14	275:2 279:11	labile 280:6	learned 163:12
knee-jerk 198:6	141:20 142:12,15	280:5 281:20,22	labor 378:20	379:2 409:19,22
knew 234:1 309:1	143:5 144:20	282:17 283:7	labor-intensive	leave 51:1 62:12
401:4	145:4,6,7,16	285:10,13 286:18	378:5	103:14 190:20
know 3:9 15:13	146:2,3,12 148:18	288:14 289:10,18	lack 161:3 386:9	212:19 291:20
20:15 22:4 26:15	152:5 154:13	290:22 291:16	lag 98:14	352:14 397:10
28:19 29:1,17	156:2,7,9,11	294:2 295:7,19,21	laid 408:1	409:16 421:1,4
32:5,18 37:15,19	157:1,8,16,18,19	298:4,15,15 299:2	landscape 306:9	led 222:18
37:22 39:20 40:4	158:2,4 159:22	299:20 300:4	language 45:3	left 15:9 53:1 200:2
41:3,6,13,15,16	161:10,20,21,22	301:20 305:11	257:21 258:7	265:22 276:11
41:17,21 42:1	162:1,2,3,5,6	312:5 325:3 329:3	large 3:11 33:18	304:17 310:20
43:13,17 44:16	163:11,19 165:11	333:16 334:16	39:7 47:18 50:1	321:2 326:3
49:3 52:21 54:1	166:11 167:15	337:11 338:6	50:14,15,18 81:14	332:10 337:15,21
54:10 55:10,19	168:13,14,16,19	339:14 340:14	89:17 93:15	352:20
60:1,18 61:22	168:22 169:3,3,11	341:6 344:3	123:17 126:16	left-hand 63:2
62:1 66:5,12 69:8	170:3,4,8,22	346:12,15 347:13	163:21 164:4	64:21
71:4,6 73:22	171:14 172:5	347:16 348:15,17	166:5 172:21	legacy 42:21 43:6
75:21 76:11,16	173:17 175:10	353:3,4 357:11,13	185:10 187:19	legally 21:19
77:20 78:4,17	178:5,8,14,18,19	357:14 366:15	188:17 222:17	legitimate 237:9
81:17 83:4,5	179:8,13,14,20	368:13 370:3,5	242:18 249:22	legitimately 126:13
85:14,18 86:1	180:6,13 181:12	371:14 374:14	266:16 273:3	lengths 386:21
87:14,21 88:18	181:15,20,21	375:15 378:6,18	300:1 313:6,11	387:19
91:1 92:13 93:22	182:10,14 183:2,4	378:19 386:14	341:16 349:15	lengthy 121:17
94:8,22,22 95:4,7	183:6 184:6,7	387:4 389:9,10	384:6 385:13	240:16
95:15,20 98:2,14	185:15 186:9,10	392:4,10 395:14	389:17 391:15	Leo 2:5 5:12
99:1,6 101:1,13	186:14 187:1,22	397:1 398:10	Largely 272:9	lesser 102:3

Neal R. Gross \& Co., Inc.
(202) 234-4433

lessons 163:12	lifetime 81:16	243:17	location 348:6,7	140:22 142:7,7
let's 16:1 19:9 20:2	lifting 63:8	listen 27:19 61:20	locations 242:1	144:11 145:19
24:4 26:2,4,17	light 73:22 232:3	62:14 115:22	374:16,18	146:7,20 147:15
34:2 35:7 36:16	291:16 297:2	344:4	locker 365:4	148:9 152:10
36:22 37:13 38:20	345:3 346:11	listening 206:17	374:20	155:15 156:4
53:15 55:12,16	356:3 375:22	listing 120:4	LOEL 224:20	160:14 161:7
59:11 61:4,7,18	376:10 399:5	lit 282:1	225:7	168:2,13 169:16
65:21 80:6,10,13	likes 84:11	litany 325:11	$\boldsymbol{\operatorname { l o g } 1 3 4 : 5}$ 269:16,16	171:7,13,16,16
80:17 81:10,13,16	limit 104:1,3,7,7,15	liter 50:21 52:22	logbook 133:19	175:22 176:1
83:8,9 97:7	168:4 321:20,20	140:1 164:15	logbooks 133:2	181:22 188:6,13
110:10 118:1	limitation 127:2	197:15	137:4 145:13	190:7 191:14
120:21 121:4	limitations 55:20	literally 266:11	151:15 152:11	192:3,7 195:4
122:21 139:16	limited 17:6 366:8	270:18	163:1,1,4	196:10 200:13
140:3 143:14	limiting 91:16	literature 102:15	logic 55:4 123:13	202:10,20 206:9
146:19 157:22	160:20	241:5 322:4	logical 122:16	209:7 210:13
183:12 186:3,3	limits 248:10 371:9	little 10:2 16:8,20	220:16 414:16	218:21 227:14,19
191:7 192:13	line 4:8,10,22 5:15	20:22 25:18 34:19	logistical 3:10	228:5 229:21
193:10 199:11	6:13 7:5 8:2,9,21	35:17 42:22 45:8	logs 134:5 152:13	238:6,7 241:10
220:10 221:4,6	40:4,11,13,14	63:5,9 81:1,2	log-normal 25:7	242:13,22 248:22
241:15 259:12	42:19 51:10 57:21	88:12 104:22	391:2	249:18 253:13
260:4 281:9 317:4	57:22 58:2 63:7	113:5 120:19	long 9:16 14:12	268:1,5 270:13
319:2 322:19	65:13 111:9	127:11 129:15	26:3 40:14 47:20	274:3,17 283:1
331:16 346:17	121:20,22 154:9	163:9,13 177:1	100:22 102:22	286:5,7,17 297:8
375:22 376:17	166:15 168:15	198:11,12,18	103:10 124:6	297:12 299:15,22
389:8 397:9	181:5 213:9,10	200:20 204:7	136:3 145:15	300:13 303:3
411:12 415:6	214:14 219:7,7	205:18 224:15,15	163:21 172:5	305:16 306:3,10
level 44:8 69:15	249:14 257:10	232:6 245:13	194:6 212:10,22	308:22 309:13
77:13 180:17	259:4,7 267:5	250:8 252:7 262:3	294:10 343:15,18	310:17 311:6,16
225:7 245:4,6,14	270:5 273:22	286:10 295:8	366:5 367:9 380:7	319:3,14 324:11
254:1,6 255:7	303:17 304:22	297:13 310:3	longer 282:1	327:18,19 329:1,7
263:7,8 271:13	306:16 337:14	326:16 332:15	328:18	330:2,13 338:12
289:12 293:21	358:4,6 368:15,15	353:1 359:5	long-term 285:18	343:7,19,20 344:4
294:21 311:1,18	373:6,16 376:22	360:14 372:18	look 10:18 15:21	346:6,11 348:18
312:9 318:8	377:22 378:7	376:16 377:8	18:20 25:1 33:13	356:8 358:14
323:13 346:1	379:1 382:6	385:11 392:7	34:5,9 35:11,21	360:5 372:6,8,10
353:7 371:13	397:19 409:14	401:16 406:1	38:18,20 41:18	390:13 394:6
375:6 388:1	lines 139:5 163:11	lived 345:7	42:16,22 43:10	408:20 409:7
403:13	180:18 227:21	liver 103:13	50:11 57:17 62:3	410:5,7 415:19
levels 99:11 101:16	linked 292:4,7	lives 339:8	63:17 78:11,12	418:6
102:3 243:11	lion's 375:1	Lloyd 2:12 7:8,8,11	80:15 84:19 85:8	looked 21:7 27:11
246:15 248:13	liquid 277:1	load 404:5	86:4 90:3,6,13	38:4,9,12 41:6,22
253:20 256:1	liquid-liquid 277:6	loaded 415:8	92:22 95:2 96:9	60:6 89:14,16
268:8 279:7	list 15:7 94:10	loan 98:16	97:9 110:5,13	127:1 133:21
280:22 287:9	180:20 215:14	locate 148:21	111:6 116:4	134:21 146:6
293:6 340:1 365:4	217:7 256:8	361:19	119:16 120:8	147:2 159:13,21
life 81:17 290:13	381:12	located 150:15	124:16 133:12	159:22 160:13
300:6	listed 98:12 121:4	315:18 390:15	134:1,3 138:15,19	178:16 182:5

196:1,1 241:4	204:1,2 222:9	75:10 81:2 181:2	majority 30:14	manholes 336:12
243:15 249:6,12	282:20 283:3,15	265:22 266:5	150:14 248:1	manner 129:8
253:18 255:2	338:9 364:13	321:2,20 339:4	253:20 289:4	385:15
263:17 266:20	372:13 390:4	353:6,7	317:14	manufactured
275:19 282:21	391:14 396:2,10	lows 394:7	Makhijani 2:6 5:21	289:5
308:16 322:22	418:13	ludicrous 290:5	5:21 6:2,3 46:20	map 71:14
326:15 329:1,3	look-up 19:8 20:6	lunch 169:9 198:4	73:20 79:11	March 16:4 149:2
330:9 355:22	20:14 24:6	198:12 199:8,10	113:10 126:21	150:20 215:1
402:7	lose 15:10 96:21	199:22 200:3,10	128:7 160:3,9,12	216:12,17,18
looking 10:16	351:20 420:9	206:18	162:7,17 163:3,8	316:10,20 359:6
25:20 27:19 33:9	losing 358:12	lung 20:3 37:21	164:3 166:13,17	359:13 362:5
33:16,21 34:22	lost 40:4,5,11,14	38:5 89:6,10,22	167:2,8,14,18	369:19 384:12
39:22 41:4 46:20	41:16 88:2 107:16	91:1 93:14 103:4	171:15 172:7	392:1 398:6
50:3 55:14 62:13	163:20 179:22	103:7,8,10,14	173:2,5,11,18,22	411:19
63:1,4 77:22	353:1	267:13 348:22	174:6 182:2,10	marching 146:18
89:19 90:22 91:2	lot 17:9 27:4 28:15	349:13 358:19	188:16 204:6,11	mark 1:20 2:2 3:21
107:22 111:5	40:18,20 50:20	359:3	209:6,11 212:5,16	4:16 33:7 42:17
116:6 121:13	56:12,14 57:14	lung-counting	213:8,13 214:9	88:8,14 97:1
123:8,11 129:10	61:3 72:11,12	362:16	217:3 218:13	102:6 110:15
133:15 138:19	76:22 83:15,17	lung-exposure	219:3,10,14	111:18 116:3
152:18,20 154:6	84:15 85:18 106:8	402:7	225:17,20 226:16	133:14 142:3
154:13,18 157:1	115:22 116:6	Lynn 2:6 6:5	226:18 227:5,11	153:6 154:17
158:21 159:14	133:1 145:21		228:21 229:19	157:12 174:8
163:14 167:15,20	146:14 147:1,2	M	230:6 238:5,9,17	182:3 184:15
170:22 177:12	156:17 168:11	M 1:23 19:21	239:16 253:5,12	204:6 206:20
178:10 181:19	175:13 206:10	377:10,12	254:9,19 255:9,11	221:8 235:1,2
182:18 185:7	208:8,22 210:10	MAC 99:11 365:13	255:17,20 256:3,7	258:21 272:20
186:2 188:12	220:14 255:3	machine 371:2	256:13 257:10	273:13 300:14
192:10 195:2,8	279:14 299:17	machining 232:10	259:22 264:16	350:9 396:15
210:7 219:9	300:15 306:9	MACs 100:13	265:2,14 266:2,9	402:7
221:21 235:3	314:2 328:6	magnesium 248:4	274:6,15 275:16	marked 12:4
239:14 241:1	341:15 356:9	248:7,11 251:1	275:20 276:2,19	Mark's 118:21
247:14 281:8	364:21,21 376:13	magnitude 265:10	277:3 284:21	119:1 179:9
298:20 300:4	380:3,5 391:10	268:10 287:12	285:5,10 286:16	Marriot 1:15
306:9 311:1,2	409:22	294:20 295:7	287:10,13,20	mass 224:3 229:13
344:10 350:7	lots 97:20 285:21	301:22 339:4	288:9 293:8	236:1 241:3
354:19 361:16,21	325:8 372:4	main 47:6 246:13	295:18 298:19	260:21,22 262:4,7
364:10,12 389:11	loud 200:18	7:	300:13 301:3,7,15	268:9 283:19
389:16 392:8	low 38:21 78:179:9	maintain 268:7	302:4	284:6 285:1
406:1 410:8	99:10 189:10	maintained 177:16	making 44:19	301:17 302:5
416:10	210:10 273:11	maintaining	48:15 58:9 73:13	336:19 379:11
looks 27:5 32:15	317:7 341:7 342:6	353:11	128:19,21 223:11	masses 301:14
34:19 58:13 66:22	365:2 386:4	maintenance	248:19 264:11	massive 340:9
73:5 76:4 129:15	387:16 389:21	127:16	288:20 323:9	342:17 404:9
145:12 146:14	393:11 395:18	major 159:14	man 387:10	match 26:5 111:12
148:12 158:12	399:15	223:20 266:16	manhole 316:16	111:17 181:14,18
178:18 192:4	lower 72:22 75:5,7	309:13 345:20	320:10 336:13	194:7 399:4 401:5

Neal R. Gross \& Co., Inc.
(202) 234-4433

matched 150:13	43:19 45:18,20	191:20 192:1,12	408:17,22 409:11	250:11,12 251:13
matching 401:10	46:2 47:15 48:1,6	193:14 194:4,11	409:15 413:22	251:14 252:5,17
material 9:11 11:7	48:8,11,14,18	194:15 195:17	414:9,18 415:3	253:9 254:11
22:9 103:17 137:1	49:2,7,12,16 51:9	198:16 199:6	416:3	257:20 258:3,5,9
154:19 222:1,7,8	51:12,16 52:1,4	200:9,19 202:1,	max 224:20 225:6	259:1 273:14
224:3 246:20	52:10,14 53:13	202:14,18,21	maximally $293: 17$	275:18 276:10
261:2 266:6	55:5,9 56:5,10,19	203:2,5,8,13,21	maximizing 196:5	280:7,12 281:4
268:14 271:18,18	59:14,18 60:4,21	204:5 205:19	maximum 51:6,17	284:2 288:21
283:2 284:18	61:18 64:3,6,10	206:4,8,15 207	100:1 101:4	289:9,20 291:12
329:20 330:5	64:12,16 65:2,12	211:3 214:22	243:17 244:4	291:17 295:22
341:7,15,22	65:19 67:11,14,19	216:9,11,16,21	281:19 289:11	296:12,20 297:16
342:16 343:3,5	67:21 68:4,10,18	217:10,13,18	293:5,14 365:13	298:20 311:7,10
345:15 364:21	69:1,6,14 70:1,6	218:2,5,9 219:20	mean 25:20 27:22	327:18 333:22
367:5 370:7 404:9	70:20 71:1 72:1	220:2,7,10 221:1	29:16 39:18 42:18	335:8 343:8,8
materials 12:15	72:20 73:2,13	221:16 222:21	43:15 45:9 48:21	344:3,4 348:10
13:22 149:10	74:19 75:12,19	225:19 230:21	51:20 60:9 75:13	349:12 350:5
222:11 223:19	77:8 79:6,16 81:7	234:7,17 238:2,	75:17 79:17 82:2	351:7 356:7 357:7
350:13	81:10 83:17 85:1	238:14 240:21	86:2 87:22 88:3	375:14,17 376:4
matrices 39:12	85:7 87:2,5,9 88:6	242:11 243:6	88:11 95:5,9	386:11 387:19
matrix 14:11,13,16	88:16 95:5 96:1,5	246:6,16,22 247:4	96:12 105:3	414:19
15:12,21 310:10	97:20 98:2,7	247:9 248:18	109:13 112:3,17	meaning 293:14
310:22 332:11	102:13 104:12	249:2 250:21	119:5 121:7,20	320:2 331:22
335:7 350:4	108:3,7 114:8	251:3,11 252:1,16	122:15 123:21	340:22
352:13 356:15	120:18,21 121:14	252:21 254:3	124:9,20 126:8,9	means 49:16 58:14
418:20	121:16 122:5	259:12,16 260:2	127:21 128:1	132:21 157:19
matter 26:17 39:	128:4,10 130:13	260:19 261:16,21	132:7 134:10	249:7 276:3
40:6 46:8 80:4	130:16 133:4	268:11,21 269:11	135:4 141:17	279:21 333:11
98:15 118:13	135:9 136:21	272:19 274:4	147:15 155:4,6	342:4,6 406:16
189:19 199:15	137:13,22 138:21	279:8,18 282:4,17	158:2 161:16	407:11 414:15
212:10 226:20	139:4,12 140:11	283:21 284:14	162:4 164:6 166:8	meant 166:11
258:11 259:2	140:18 141:11,15	289:2 290:15	166:12 168:18	318:10 326:2
261:6 278:19	142:14,21 143:3,8	291:6,15 292:17	171:2,4 172:2	measure 319:8
298:16 303:19	144:16 146:18	293:2,22 294:16	173:16 174:2,15	measured 23:7
306:14 347:14	147:19,21 148:4,9	295:3,11,15 296:9	177:2 178:10,14	25:8 179:8 189:8
357:4 386:14	148:16 154:1,4,8	304:14 305:15	179:8,17 180:8	281:13 282:16
421:9	154:11,16 155:1	306:19 324:19	181:2,12 184:14	301:9 337:8
matters 110:8	157:11,21 158:14	327:13 334:4,10	185:22 186:2	measurement
Mauro 2:5 5:19,19	161:13 162:22	334:14,19 341:12	187:13,15 188:6	183:20,21 254:11
10:9,13 11:18,22	163:6 164:1	342:2 343:1,7,17	188:11 189:20	254:20 282:10,15
12:4,12 13:2,12	168:11,18,22	343:21 344:3,19	193:14,17 194:5	355:8 375:19
13:19 14:6,17,20	169:6,10,22 170:3	346:12 347:4,9	202:2,7,9 203:19	measurements
15:16,22 23:14	170:9,13 172:15	357:5 371:14	204:19 205:22	124:5 254:14
24:2 25:10,13	172:19 173:4,7	373:12,17,20	206:2 207:18	282:6 285:15
29:8 31:8,14,17	180:2 182:14,19	374:2 404:2,8,16	208:17 211:21	299:4 300:19
31:21 32:2,7 34:7	183:10 184:7,11	404:19 405:22	212:2 220:10	310:10 316:13,18
34:11 36:14 37:5	184:21 185:3	406:8,11,15,21	225:2 229:3	317:3,7 318:19
37:10 38:2 39:8	186:7 189:16	407:4,8,16,21	249:17 250:1,2,9	319:15 322:8

Neal R. Gross \& Co., Inc.
(202) 234-4433

328:3,15,17	92:3,5,20 93:5,18	176:5,6,21,22	302:18 303:2	method 110:8
354:14 365:11	94:5 96:12 97:2	177:3,6,7,9,19,22	312:11,15 330:14	149:14 176:14
390:2	98:5 105:15,19	178:1,2,7 179:2	331:2 337:22	183:14 250:4,13
measures 316:14	106:3,6,17,21	180:4 181:8,12	338:5,9,15 339:7	291:9 365:18,19
mechanical 336:8	107:1,21 108:4,9	182:17 183:4	339:12,17 342:20	367:13
337:7	109:8 110:1,12	184:5,9 185:21	346:20,21 347:18	methodology
mechanism 388:5	111:4,18 112:12	186:8 187:2,6,10	348:5,9,21 349:5	153:16
median 25:20 65:5	114:3,6,18 116:16	187:16 188:4	349:10 350:2	methods 186:21
65:6 66:8 68:17	117:17 119:4,12	189:11,20 190:14	351:4,13,19 352:6	270:3 292:9 327:5
68:18,19,22 69:1	119:14,20 120:1,5	191:7,10,12,17,18	352:10 353:20	metric 47:6 223:17
69:21 71:12 73:6	120:6,20 121:21	191:22 192:2,6,7	374:3,10,15 392:6	227:3 228:3,9
medians 66:15 69:8	122:2 123:7,19	193:11 194:1,9,13	392:22 393:3,6,20	233:6 378:10
69:21	124:13 126:7,11	195:11 196:3,13	394:1,13,21 395:2	metrics 382:16
medical 2	126:19 127:8,21	197:22 199:1	395:3,10,17,19,22	microcuries 281:10
medium 386:4	128:5,16 129:2,11	200:18 201:22	396:5,11,16,18,20	microgram 77:19
387:16 399:15	130:22 131:5	202:2,7,15,19,22	399:10,22 400:5,9	micrograms 20:12
402:9	132:2 133:5 134:4	203:4,6,12,17,22	400:15,21 401:7	21:2 24:14 25:5
meet 18:16 150:9	134:10,13,19	204:10,16,17	401:12,17 402:5	78:6 164:14
261:12 419:9	135:4,11,21 136:5	205:4,5,9,11,15	402:13,16 404:15	microseconds
meeting 3:12 11:1	136:11,16 137:7	205:17,21 206:7	404:17 407:1	340:5
12:15 14:22 15:5	137:18 138:1,18	206:12 207:9,13	409:17 411:1,5,9	Microsoft 412:5
16:18 17:1,15	140:7,12,19	207:17,20,22	411:14 412:2,13	middle 210:16
21:10 43:20 44:14	141:13,17,20,22	208:2,5,16,20,22	412:16,19 413:1	311:3 417:11
44:14 45:13 46:9	142:1,5,6,13,15	209:2,10,15,17	414:10 415:2	migration 342:19
46:22 117:6	142:17,18,22	210:18 211:1,13	416:7 418:11,18	343:5
133:10 215:6	143:6,14,18 144:1	211:16,21 212:1,2	419:5,13,18 420:2	mill 77:7 85:20
246:16 248:21	144:4,8,19 145:3	212:15,20 213:6	420:6,18 421:5	106:10 107:13
305:19,20 352:14	145:5,7,9,17	213:19 214:1,2,5	members $3: 14,15$	108:21 248:14,15
359:7,16 384:13	146:9 147:17,20	214:12 216:7,10	4:9 7:15 8:3,16	286:19 288:4
392:1 421:7	148:1,6,14 150:16	216:13,19 217:4,6	9:9 113:9 149:17	322:9,11,19 323:2
meetings 39:18	150:21 151:5,9,14	217:8,11,15,20	memory 113:12	323:3 387:10
131:2 273:7	151:18 152:4,7,17	218:4,6,12,17	mention 9:7 115:15	milligram 215:11
399:14 404:4	153:5,15,21 154:2	219:8,13,16	130:8	milligrams 50:21
meets 213:18	155:2 157:20	234:19,22 235:11	mentioned 37:21	52:22 140:1
Member 1:20,21	158:7,15,17,19,20	235:15,19 236:4	110:21 164:10,21	197:15
1:21,22 3:21,22	159:1,3,5,6,9,12	236:12,16,19	251:2 312:18	million 246:2
4:1,2,3,4,5,6	159:20 160:1,7,11	237:2,6,22 238:20	mentioning 112:5	289:15
11:15 12:10,13	161:9,14 162:15	239:2,5,9,13,21	410:2	milliR 316:19
23:15 34:8 39:9	163:17 164:6	240:3,6,9,13,18	mere 36:9	317:9 319:7
41:2 42:15 43:7	165:6 166:8 167:5	258:16,19 260:11	message 50:22	320:21 321:8
43:11 45:7,19	167:13,17 168:16	262:2,9,13,20	met 9:17,17,19	355:8
46:1,18 47:21	168:21 169:20	263:3,12 264:10	16:9 150:8 279:2	millirem 316:20
48:2,7,9,12,16,19	170:6,11,14 171:3	284:1,15,20 285:1	283:12	321:4 342:4
49:6,9,14 52:12	171:8,18 172:9,11	285:4,7 294:14,22	metal 233:8 236:18	millirems 59:12
59:21 67:9,12,20	172:17 173:8,13	295:4 296:6,10	248:4 367:3	milliRs 317:20
88:10,17 89:1,4	174:4,8,12,20	297:6,12 298:4,7	370:11	millman 77:5,6,8
90:9,17 91:2,6	175:7,11,20,22	298:10 301:1,5,10	meter 365:15	78:3,12 80:7,8

Neal R. Gross \& Co., Inc.
(202) 234-4433

93:6	156:18 179:14	361:10 362:16	117:14 135:14,22	National 1:8
millmen 77:17	185:10 204:4	385:3,4 386:7,20	136:8 144:10,22	326:20,22 327:16
82:12 83:12 84:6	205:6 212:17	399:18	145:15 146:5	328:22 346:9
90:8 95:6,10,17	214:3 335:14	modeled 104:8	209:13 218:15	natural 223:18
120:22 159:16	mission 132:18	modeling 179:3	332:18 333:13	227:22 228:9
millrights 171:14	248	314:2 337:18	334:16,20 338:4,7	233:4 236:17
mills 323:3,7	mistake 238:19	393:13	338:11 344:15,21	341:11
millspec 133:16	mitigation 368:	models 23:10 35:22	348:7 358:5,16	nature 197:10
146:22	mix 22:7 215:8	42:2 86:5 132:11	366:12,14 379:2,8	336:7
millworkers 87:13	216:4 222:1 231	327:22 344:14	379:15,22 382:17	near 311:2 314:9
mind 9:10 18:22	238:15 240:22	modest 333:12	383:3,7,10,14,22	nearly 319:22
56:11 60:14 70:17	292:1,3	modification 321:5	386:11 387:2,13	necessarily 159:4
71:3 74:20 79:4	mixed 264:5	324:1	388:8,17,20 389:7	264:7 292:7 346:7
112:8 120:17	mixture 275:6	modifications	394:11,17 399:20	349:3,22 351:6
128:12,14 182:17	292:11 365:5	309:19 324:7	400:2,13,19 401:1	401:19 408:13
267:8 290:7	386:15 389:13	340:	401:8,13 402:3,6	necessary 302:7
294:19 298:11	model 16:7 17:2,2	modified 341:4	403:16 404:7	375:16
309:9	17:11,12 18:1,21	mold 364:17	405:6,18 413:9,15	necessity 44:12
Mine 12:4	19:2,6,9 22:4,6,21	moment 310:3	move 26:16 55:16	need 9:4 10:22
mined 322:	24:12 26:12 28:13	311:5 321:4	56:3 61:4 65:12	17:10 30:12 42:16
minimized 196:6	30:13,22,22 32:10	331:17 335:6	118:3 176:14,20	42:21 51:3 72:7
minimum 23:4,5,8	33:19 36:4 37:6,7	money 172:5	279:20	118:22 123:17
23:20 79:5 129:14	37:8 39:15,20	monitor 374:14	moved 190:12	134:1 135:5,12
142:4 243:18	43:16 44:17,19	monitored 36:10	224:4	137:15 141:3,15
minor 26:14 302:3	45:1 52:17 53:4	47:4 59:4,10 88:	moving 36:13	144:22 148:5
minute 55:1 62:13	53:17,22 54:9,20	88:5 172:13	50:12 141:19	161:9,17 171:6
192:14 318:7	55:2,6 61:21	179:19 185:6	336:9 379:11	178:5 188:9,13
320:14 328:11	62:19 63:21 65:8	186:20 189:3	multiple 95:16	196:14 214:18
376:5 391:8	66:11,16 67:3	209:4 291:14,16	277:4 373:21	225:13 234:13
minutes 3:10 40:16	70:12 71:16 74:2	monitoring 47:7	379:17	238:9 258:22
40:17 118:11	74:12 75:1,9 76:2	89:15 124:9,18	multiples 365:13	259:7 267:8
304:16 340:6	78:19 80:2 81:3	170:21 204:14	multiply 364:2	269:15 270:12
misinformation	82:3,7 85:5,12,15	208:15 272:12	multi-colored	274:3 296:15
231	86:3 87:15 90:1	348:19	372:6	302:22 310:15
mislabeled 219:1	93:8,12 101:2,17	month 47:9 90:	mute 8:11,22 9:2	327:19 330:8
mislabeling 217:19	106:8,8 107:5	115:7 180:10	118:10 303:16	339:8 340:14
mismatch 181:21	112:15 113:4	monthly 186:10		345:19 346:5,10
18	120:10 121:12,18	195:6 201:17	N	351:11 381:18
mismatched 24:1	131:13,21 136:13	months 130:5	N	385:17 387:2
misrepresent 19:5	136:15 157:1	218:20 366:6,7	naively 390:17	389:1 403:22
misrepresenting	179:12 183:7	morning 3:3 42:18	name 3:6 150:16,22	405:4 406:18
215:21	215:9 221:22	136:10 161:8	151:3	409:8 413:21,22
missed 33:12	231:7,8,9 313:20	387:8	named 369:5	416:16,19 417:3,5
124:12 125:6,14	313:21 325:4	Morris 2:3 4:18,18	names 18:11 369:6	needed 277:10
125:16 349:16	328:7 329:21	31:6,9,15,18 32:1	Nancy 2:10 8:10,14	needle 33:10
399:12	334:5,15 337:6	32:3 43:2 52:2,5	8:14	needs 18:17 65:13
missing 150:11	339:2 344:11	53:5 72:15 73:1,9	narration 235:17	413:1,18 421:3

Neal R. Gross \& Co., Inc.
(202) 234-4433

negative 345:15	243:2 246:9 247:2	417:17	328:6	190:2 191:14,15
Neither 39:8	252:19 253:11,15	Ninety-fifth 402:13	nope 152:22	195:7 196:1 199:2
neptunium 22:8	257:20 258:3,14	Ninety-nine 245:19	normal 137:13	200:21,22 201:5,7
237:14 243:12	258:21 260:4,12	niobium 219:2,6,7	249:16 269:16,17	202:13 203:19
279:21 280:4	264:6 270:4	niobium-95 218:19	normally 385:6	212:6 223:12
281:9 286:4	273:13 274:14	NIOSH 2:2,2,3,4,4	note 316:12,17	229:22 241:9,12
neptunium-237	275:14,17 276:1	2:5,10 4:13,16,22	362:7 365:16	241:12 243:1,1
215:13	288:19 289:3,8,17	5:15 8:15 12:1	notes 165:1	252:3 259:6
nested 139:6	290:10 291:4,13	16:6 17:1 19:3	notice 15:3 23:3	262:11 263:22
Neton 2:2 4:14,14	292:15,20 293:12	37:17 41:18 46:14	257:5	268:17 269:4
23:1,18 29:5	293:20 295:6,13	85:3 88:22 104:19	notion 324:13	273:4 274:9,11,16
32:21 35:20 37:4	296:18 298:2,5	107:8 109:14	notwithstanding	287:4 288:5
37:8 42:13,16	302:22 303:10	110:1 114:17	62:8 231:2 238:16	301:11 306:11
43:4,10 49:3	326:11 327:14	115:4 116:10	novel 346:8	307:10 308:14
52:15 53:9 55:3,6	329:12 333:21	117:22 119:8,20	November 9:19	309:20 311:7,15
59:1,16,19 60:1,8	334:8,11 340:15	120:1 124:11,22	304:21 306:22	314:9 315:21
64:2,5,8,11 68:2,5	341:5,14 342:15	132:20 133:3	307:2 314:17	317:10 326:3
68:15 69:4,11,20	342:21 343:2,15	143:17 155:12	317:18 319:5,9	338:13,17 359:8
70:4,14 71:18	344:1 346:5 347:1	174:21 183:7	369:19 377:19	373:14 385:13
75:16 77:7 79:3,7	347:8 349:8,12	197:4 206:1 211:6	NRC 336:17	391:7,15 400:4
81:5,8 83:15 84:2	350:21 351:11,15	211:8 215:5 219:5	NTS 46:4 173:20	numbering 238:19
85:2,16 87:3,7,19	352:3,9 355:22	253:6 280:8	189:9	numbers 26:11
88:8 92:11 93:10	356:17 357:6	295:21 296:4,17	nuance 147:1	34:15 37:14 56:22
94:4 96:8,14 97:4	Nevada 162:9	302:19,21 304:7	nuances 296:20	58:2 62:20 64:20
97:22 98:9 99:13	167:15 188:21,22	305:3 306:6	nub 80:4	67:18 78:8 116:1
99:16,18 100:14	189:15	312:18 313:3	nuclear 265:6	193:3 194:8
100:18,21 101:9	never 37:12 88:4	329:14 346:21	336:22	201:19 213:21
101:11,16 103:2	178:15 185:14	350:10,14 355:21	nuclides 215:14	222:16 241:6
103:22 104:13	189:8 355:11	359:15 360:11	279:13 292:7	242:20 253:9
105:17 106:1,4,9	359:8	384:13 385:12	377:11	262:22 263:13,15
107:19 108:14	Nevertheless	392:9 406:18	number 17:14,15	264:17,22 265:13
109:20 110:10	183:16	415:7 419:19	18:5,10 26:1	265:15,18,21
111:8 114:10	new 47:13,14 56:15	420:1	37:16 38:5 44:9	266:4 269:15
121:9,15,18 122:4	64:16 115:9,19	NIOSH's 46:19	50:1 51:6,17 57:1	281:8,16,17 283:3
123:12 124:2	116:21 132:12	174:9 305:9	57:1,22 58:1,3,11	285:15 287:16
129:6,14,19 130:7	221:13 346:11	307:13 308:12	58:12 63:22 64:22	288:1,18 290:3
130:15,19 131:8	news 115:20	313:18 372:9	66:20 77:9 78:7	298:1,13 299:18
131:14,21 170:16	nice 170:9 184:19	386:2 420:17	81:14 91:16 92:14	300:1,11,15,18
171:5,10 176:12	304:15	nitrate 261:9 370:8	97:7 107:10	301:6,8,8 305:8,9
177:8,16,20	night 14:21 44:15	370:16	108:15 113:19	320:19 324:2
178:21 179:16	86:19 102:14	noble 328:21	114:12,19 120:7	325:13 329:8
180:16 181:10	147:14	NOCTS 90:14,21	125:18 140:1,9	333:4 337:14
182:9 184:13	nine 227:15 354:11	91:22 92:7 96:13	145:13 158:9	340:14 343:8
185:1,4 187:4,7	366:7 367:2,2	96:14,15 113:20	159:13 167:19	344:10 409:7
187:12 188:1	368:20 370:2,15	119:10	169:12 173:16	number's 347:19
190:9 232:1,2,18	370:17,19 374:6	nomad 204:21	187:21 188:2,9,11	numerous 9:20
233:10 234:15	406:9 416:12	non 108:18 163:4	188:17 189:4	14:3

nutshell 304:19	359:8	119:13 120:5	70:16 111:9	operations 20:9
	odds 273:12	121:14 122:5	115:15 140:21	28:10 125:5
0	offer 25:15 295:16	123:14 130:7	181:17 188:2	127:14,19 234:10
O 3:1 133:16	296:18 334:12	131:7,16,17 132:1	220:18 223:14	366:2 367:20
134:16,22 146:20	office 169:8 $205: 8$	135:21 136:5	232:21 259:1	396:7
151:15,20,22	210:15 238:18,22	139:20 148:16	270:19 319:12	operator 77:7
152:6 153:9,20	239:4 253:10	151:6 152:17	341:7 357:10,13	86:21 88:4 106:2
359:17 360:19	262:4,10,12	153:11,21 154:7	402:22	106:5,10,10 127:7
408:2	299:16 300:14	154:22 155:8	onerous 97:9	156:6,8 179:11
Oak 223:8 299:22	offices 8:17	156:5 170:2 176:7	109:16	operators 85:20,20
objected 244:15	official 1:23 3:7	178:16 183:22	ones 10:7 33:17	90:7 94:7 108:21
objection 190:10	136:14	190:15 191:12	34:6 66:16 80:11	108:21 181:6
objective 302:6	offline 389:4,6	193:5 195:11,14	94:2 95:8 151:20	opinion 58:14
objectives 17:16	Oftentimes 86:15	199:9 202:18,21	151:21 178:3	101:20 127:22
observation 25:16	97:16	203:6 204:5 213:7	180:10,11 192:2	156:16 162:21
32:22	oh 8:7 13:5 42:15	216:19 217:13	274:8 293:4	189:2 260:13
observed 28:3	63:11 88:10 89:4	218:12 219:8,17	316:11 381:16	327:3,9,15 328:20
402:11	120:5 134:8 144:8	226:19 234:17	387:4 404:11	opinions 327:12
obtain 270:16	184:11 190:6	239:5 240:7 241:5	405:8 409:9,11,13	opportunities
obtained 24:7	269:6 285:7 318:3	247:9 249:20	409:18 420:8,9,10	98:18
270:2	334:4 335:6 383:7	250:21 251:3,11	one's 397:1 400:3	opportunity 221:11
obvious 52:21	406:8 413:14	252:16 254:3	one-pager 141:14	opposed 37:5 246:1
obviously 111:13	416:7	259:14 262:9,9	ongoing 56:13	261:22 377:7
128:1 129:3 137:9	Ohio 229:13	270:10 279:11	online 392:8	option 168:5
138:5 162:4	231:18 238:18,21	303:11 304:11	onward 268:19	options 83:20
169:13 217:18	243:9 245:3	307:7 312:15,17	on-site 90:5	166:14
229:19 262:15	247:18 253:10	331:2 334:21	open 15:9 61:14	oranges 395:1
276:12 281:15	262:3,10,12	339:7 344:1	153:4 166:18	ORAU 2:2,2,3,4,4
288:6 321:10,17	264:22 299:16	346:17 352:12	249:11 319:20	2:5 4:13,18,20 5:1
331:8 354:7 382:8	300:14	355:17 357:9,18	364:17 399:20	5:2,8,12,15 92:19
414:21	okay $4: 7,125: 17$	357:22 372:15	opened 290:15	94:16 96:16
OCAS 88:22	7:2,14 8:19 10:12	374:2 383:19	opening 18:22	149:17 295:21
149:17	11:13,21 12:3,18	385:10,19 387:12	317:13	392:20
occasion 289:14	14:8 19:19 20:7	389:5 392:22	openings 309:15	order 11:10 34:17
OCCUPATION...	22:4,20 23:14	394:13 397:9	336:10	35:6 76:8 78:1
1:8	24:2,5 25:17 26:2	398:12,17 399:1	operated 318:5,8	189:5 195:4
occur 228:17	32:1,13 40:2,17	400:5 402:5,14,15	320:15	211:22 213:18
occurred 36:7	41:6 42:15 48:17	402:17 406:8	operating 56:13	265:10 268:9
59:15 100:6,13	53:16 58:15 60:4	410:11 414:4	245:10 318:14	301:22 339:4
105:3 309:13,20	61:12 64:4 65:2	415:18 416:4,12	328:12 354:20	375:16 381:21
333:6	65:19,20 66:4,22	416:15,18 417:16	operation 210:16	406:16
occurs 310:13	67:12,19 68:4	418:2 420:22	275:2 276:5 277:2	orders 146:18
329:12	70:5 71:18 72:14	421:2	301:14 314:17	287:11 294:20
octave 213:5	75:19 79:2 80:6	old 350:6,7 415:5	318:20 319:4	295:6
October 14:22 17:1	80:20 89:4 91:4	older 388:15	354:15 365:9	ore 322:8,9,11,15
47:1 115:17	96:7 99:13,16	once 22:4 30:9 35:1	396:8	ores 223:17
163:11 166:18	114:3 118:9	47:9,9,9 50:12	operational 366:10	organ 19:22 20:18

Neal R. Gross \& Co., Inc.
(202) 234-4433

103:12 357:11,12	295:9 364:6	13:6,14,16,18	parsed 167:10	247:17 250:16
organic 277:17	393:22	26:4 61:2 240:16	part 42:4,5 89:17	251:9,22 253:21
organization	overboard 254:7	265:5 367:9	98:10 130:18	254:1 259:13
305:13	overestimated	419:14	132:7,17 157:9	268:8,14 272:21
organs 259:17,21	93:16	pain 53:10	177:3 187:8 188:3	273:19 274:1
295:5	overestimation	paint 345:8	189:22 191:22	279:10 281:8
orifice-driven	327:10	painter 80:9	202:9 218:17	284:8 288:22
339:11	overt 52:17	paper 51:573:21	236:2,7 241:9	289:15,20 290:12
original 46:6,11	oxide 370:9,16	74:1,20 102:8	248:20 263:17	298:5 299:15
170:17 171:15		136:6 173:5,7,10	264:4 265:3	passed 214:19
172:20 184:20	P	214:11,13 215:5	268:12 276:4	passing 330:11
190:10 242:13,16	P 1:19 3:1	220:1 225:1,22	286:22 307:11,20	pasted 219:4
242:19 274:18	PA 304:20 307:4,5	226:6,12 234:13	308:18 312:1	227:16
282:19 283:14	package 314:1	239:17 247:12	348:11 351:5,6	pasting 205:16
329:11 358:15	321:12,12 331:18	264:18 286:7,18	400:11	path 39:13 72:13
382:20 383:17	332:5,11	286:21 288:12	partial 207:3	187:13 336:15
393:10 398:20	Paducah 246:9	295:20 296:4	PARTICIPANT	407:22 418:9
404:5 406:2 408:5	254:12,17 262:2	297:10 299:19	61:16	paths 336:14
408:20	284:3,6 285:2	302:19,21 303:4	participants 2:1	patterns 158:21
originally 171:11	297:21 299:21	304:8,19 305:22	13:14	192:10
236:6 325:14	Paducah/Fernald	306:21 333:15	participated	paucity 386:8
398:8,21 408:1	297:17	338:22 339:3	246:20	Paul 1:21 4:1 67:8
409:18	page 13:8 16:5	358:16 359:20	particles 248:16	155:5 173:19
originated 232:14	18:22 19:7,17,17	367:1 373:1	341:19	221:9 234:19
274:22	20:4 24:8 26:18	385:22 387:6	particular 27:19	304:10
oscillates 32	27:8,12 51:19	388:6 389:1	28:9,10 32:9 57:6	pay 71:15
oscillating 370:9	56:20 57:13,20	396:21,22 397:	127:2,3 281:7	PA-cleared 10:8
OTIB 130:15,16	61:7,8,12,14,14	400:6,8 401:1	308:4,14 317:2,16	16:3
135:18 303:6	61:19 62:21 64:19	402:19 403:6,21	319:14 328:1	PDFs 164:19
OTIB-4 183:13	75:20 76:19 77:2	412:3 413:11	356:1 362:18	peer 330:12
ought 208:3 211:1	78:17 203:11	414:5,8 418:12,17	363:4,4,12,13	penetration 320:9
outcome 21:19	205:19 216:5,6,21	419:19 420:17	364:8,14 365:4,9	penetrations
44:1 102:16	217:5,9 219:6,12	papers 10:5,6	365:9 366:2,5	309:16 319:19
112:21 121:7	224:10 227:1,14	115:9	368:20 369:4,16	333:12
181:19	227:15 235:5	paragraph 217:16	370:2,13,14 371:4	people 33:14 34:13
outliers 250:8	241:1 249:10,20	parameter 122:10	374:8 377:17	35:14 38:21 39:3
outside 13:16 96:15	256:11,16,16	parameters 30:1	381:14,22 382:16	42:7 54:5 55:7
116:5 125:20	306:22 309:2	63:19	388:6 389:14	58:3 59:8,10 61:3
273:20 349:20	310:14 311:21	Pardon 21	390:7 397:17	81:9 84:13,20
outstanding 242:7	312:16 314:6,9,10	255:10	413:6 415:22	86:4,15 95:21
out-of-specificati...	314:11 316:1	parent 322:14	particularly 227:9	107:10 111:21
271:18	318:4 319:3	parentheses 66:2	368:19 384:17	112:14 116:5,20
overall 63:21 123:9	320:20 322:12,21	314:18	parties 409:3	117:2,2 120:7
150:12 155:21	330:17 354:11	parenthetically	parts 140:8 233:8	121:19 125:1,14
156:2 203:6	pager 141:16	245:16	236:18 241:3,16	125:16 126:12
207:10 212:21	pages 10:16,17,21	park 34:4	241:18 243:4	128:2 130:3
236:2 241:12	11:1,6 12:21 13:3	parse 24:20 85:19	244:1 246:1,1	135:12 158:21

174:2 180:19,22	79:4,9,15 85:22	204:3,21 206:15	picture 32:4 57:18	379:19 392:21
181:1 190:17	86:4,6,10,11 87:1	241:13 364:7	201:13 349:7	406:2 408:5,17,19
212:8 242:1 243:6	87:18 89:21 109:4	401:5	403:2 408:12	415:5 416:5,8
266:21 273:12	122:9 125:3	personally 162:9	413:8	planned 278:19
312:20 314:13	130:11,17 385:6	171:21 266:19	piece 67:6 83:13	415:10
327:11 328:21	386:18 399:21,21	personnel 315:7	240:17	planning 13:7 15:3
348:22 349:4,22	402:8,10,12	361:13 369:5,8,21	pieces 20:21 99:	383:13
369:1	percentiles 391:3	person's 54:20	378:13	plans 143:13,19
people's 420:11	percent-plus 49:4	82:18	pile 330:5	409:5
percent 16:15 21:3	perfect 368:22	perspective 73:21	pilot 368:21 369:11	plant 71:20 72:19
21:5,14,17,21	perforation 345:14	126:1,2 221:2	379:19 416:7,11	73:6 74:5 75:2,9
22:14 30:11 33:4	performing 226:7	356:11	416:20 417:1	84:15 98:12,13,17
33:5,7 34:2,16,17	perimeter 348:18	pertains 369:4	418:5	99:12 111:1,22
34:20 35:1,8,9	period 21:16 24:19	pertinent 409:10	Pinney 350:16	112:1,5,7,8,10,11
38:7,11 44:3,3,8	57:6 80:1 82:14	409:18 413:5	351:2,16	113:13,17,19,22
48:20,22 50:1,13	85:13 99:7 100:22	416:22	pipe 336:11	114:4 167:11
57:3,8,9 58:14	124:6 125:21	petition 126:19	pipes 309:16	179:20 190:13
62:10,11 65:21	129:3,20 192:21	132:6 307:12,14	pits 248:10	191:16 223:15
67:11,12 71:8,8	201:8,11 208:7	307:15	place 17:12 24:17	224:17,17 232:22
72:18 81:5,9	209:4 212:9,17	petitioner 2:13,	29:21 66:19 73:4	233:2 234:2 237:8
84:20 89:8,11,21	230:14 233:5	2:15 7:19 8:6	147:6 153:14	237:17 244:21
91:12,14,15,18	241:14 255:7,7	12:10	200:11 252:4	245:22 246:10
92:2 98:3 101:15	263:6,10 276:8	petitione	324:1 359:13	248:2,4,14,17
102:2 123:3	277:12 282:8	157:5 190:18	362:2,3 368:2	253:22 261:7,11
137:10 147:7	299:1 309:11	petitioner's 353	388:16 391:22	264:5,7 265:22
150:12 152:12	313:8 323:22	Phillip 1:22 4:5	407:10	266:1,8 277:9,17
157:14 158:4	329:18 340:7	philosophical	placement	278:2,10,12,13,13
167:9 170:20	354:21 359:2	286:13	places 27:6 66:13	278:15,21,21
188:19 189:2	363:14 364:16	phone 8:22 9:5	73:3 222:12	279:2 284:7
216:1 245:19	367:3 369:16	118:10 200:15	plain 244:12	288:15 289:14
267:15,19,21,22	374:19 393:19	303:16,21 312:21	plan 9:22 10:10	290:14 293:7
270:21 272:6,7,14	periods 38:21 47:5	398:11 399:12	11:14 14:15 16:2	360:7 361:20
278:8 290:9	62:17 70:8,9	421:7	16:6,10,10 17:14	367:2 368:20
311:12,12,18	79:19 85:2 99:11	phones 199:13	17:18,20 18:6,12	370:2,6,14,15,17
318:15,17 319:16	100:12 242:1	physical 41:1 337:8	18:16 26:21 31:1	370:17,19 373:13
321:21 323:6,7	243:3,7 283:1	physically 53:1	33:2,9 43:20 44:2	374:6,22 375:5
331:9,10,13 332:1	294:9,13 361:14	physicist 4:17	44:5 46:21 47:2,8	380:14,16 391:6
332:19 341:21	permeates 365:17	physics 104:18	47:11,14,17 53:15	396:6 401:18,18
349:13 357:14	person 52:5,7 53:5	pick 15:13 30:1	54:4,14 74:3,7	401:19 405:11
375:13 382:10	53:8 82:6 97:15	53:17,19 54:5,8	83:2 131:11,19	406:6 407:18
384:8 413:20	99:21 101:5 122:6	80:8,13 103:5	139:14 140:15	410:8 411:4
percentage 50:7,14	129:4 139:1 179:7	122:8 213:16,21	141:10,14 144:13	415:15 416:11,12
percentile 23:12,21	185:19 186:9	picked 48:10 53:6	148:5 149:13	416:17,20 417:1,4
25:6,6,22 28:14	192:20 193:10	62:20 86:12	161:11 162:9	417:7,10,14,17,19
28:14,21,21 64:9	200:21,21,21	404:10 409:18	163:10 166:18,20	418:5,5
65:7 75:6,7,11	201:1,15 202:13	picking 364:21	171:11,15 188:6	plants 56:13 75:4,9
78:11,12,13 79:2	203:10,11,15	Picocuries 64:12	200:4 220:15	75:14 111:2

Neal R. Gross \& Co., Inc.
(202) 234-4433

23:12 233:1	54:7,12 60:20	123:10 126:3	84:14	presumably 226:13
244:13 245:5,15	69:7 73:15 74:22	146:7 162:6,19	pound 281:10	299:6
246:5 257:9	75:17 84:11 92:21	175:9 270:18	pounds 229:11	presume 280:21
66:17 284:19	108:1,10 116:19	290:9	pouring 364:17	pretty 22:20 32:16
360:6,9 361:17	126:8 138:3 141:2	portion 337:6	ppb 287:4	78:14 102:11
370:3 372:22	162:10 164:8	375:11 377:2	practical 296:11	104:17 108:13,20
406:3,5 407:5,6,8	172:18 187:15	portions 308:18	300:6 380:7	111:20 115:8
408:21 409:7	204:8 216:6	posed 183:11	practice 113:18	122:18 153:22
415:16,17	222:18 229:18	position 283:5,	pre 328:15 332:1	162:17 174:3
plant's 276:21	243:9 261:11	308:21 326:5	340:1 355:14	178:15 186:18
plate-out 341:15	263:14 264:10	337:20 386:5	precautions 254:15	189:9,10 194:14
play 89:17 332:7	267:22 273:14	positions 369:9	precise 371:13	247:16 251:9
345:1	284:2 289:18	positive 54:19	predefined 167:21	286:8 291:18
plays 340:18	300:8 302:3	possibility 108:1	predict 325:6	296:11 297:20
please 4:13 5:5 6:1	321:17,17 323:10	291:19 333:5	336:21	328:19 341:7
9:3,9 19:6 68:11	330:1 331:19	possible 11:3 13:15	predicted 337:6	349:8 372:11
194:19 217:7	355:7 356:6,11	28:13 30:3 58:18	prediction 101:3	390:5 399:7 419:3
221:8,13	359:14 364:9	82:12,13 83:10	preface 18:18	prevailing 336:3
plenty 36:21	365:16 366:8	87:8,22 88:2,3	preliminary 362:4	prevent 36:11
114:21	375:2 385:12	92:19 93:3,11	364:10 414:14	309:17 342:19
plot 389:19	402:19 410:16	95:2,16 129:1	premise 280:9	343:4
plotted 269:20	414:14	286:2 346:19	prep 396:7	PREVENTION
plug 37:13	pointed 56	358:10,12	prepared 46:13	1:5
plus 247:21 349:13	236:15 272:5	possibly 101:22	102:8 115:13,14	previous 117:6
plutonium 165:16	300:9 325:8	107:6 217:1 258	306:8 359:7	157:10 194:17
237:14 241:19	pointers 73:17	353:17 397:13	presence 3:12	195:1 225:22
243:4,12 244:2,7	pointing 229:20	post 332:14 359:18	present 1:18 13:15	234:18 353:18
244:20 245:18,20	270:1	360:12	74:5 83:19 129:4	399:13 404:3
245:21 246:4,21	points 32:4 40:	posted 60:12 134:6	presented 46:14	419:4
248:5 254:22	61:5 138:19 220:6	151:21 382:13,22	99:12 144:15	previously 16:9
260:1,7 268:7	220:14 223:1	397:11	163:10 166:6,22	115:2 146:6 313:
271:17 275:4,8,12	296:7 301:16	posting 359	186:20 288:12	420:16
275:21 276:5,10	306:11 320:22	post-production	339:3 387:8	pre-1979 328:3
277:9,20 279:4	28:1 333:1	362:15	389:18	340:12 342:3,12
280:4 284:8 286:1	416:10	post-1987 340:1	presenting 219:22	346:2 353:10
286:3,3,9 287:1	poised 11:11	potential 17:21	220:6 350:6	355:9
288:22 290:13	policy 59:14 60	18:2 35:17 45:	presents 24:10	pre-1980 319:18,21
291:14 292:5,14	pooled 29:18	59:3,12 77:22	presiding 1:17	primarily 150:2
292:22 295:10,11	poor 358:8	123:10 165:19	Presley 1:21 4:3,3	222:12 223:7
298:18	POOS 244:7 266:6	168:3 267:16	208:16,22 209:17	224:14 229:7
plutonium-239	71:17	315:2 363:3 364	211:16 212:1	237:13 243:11
22:8 215:13	populate 94:20	364:15 378:22	216:7,10 217:6	260:21 287:7
POC 93:21 110:5	populating 400:10	386:4 387:1 402:8	presses 27:16	primary 132:22
point 23:1 26:14	400:12	potentially 33:21	pressing 356:10	224:12,13 257:4
31:9 35:20 36:15	population 31:11	85:5 89:20 102:3	pressure 313:13	260:20
41:3,18 48:15,17	31:12 37:19 39:7	105:2 273:9	314:2 337:2	principles 414:1
49:18,22 52:15	49:4 63:20 71:20	potentials 33:17	345:15,16	printer 218:16

Neal R. Gross \& Co., Inc.
(202) 234-4433

prior 130:5 226:13	290:17	354:5	proportion 375:12	pure 290:3
228:17 234:14	procedure 132:8	production 149:10	proposal 119:5	PUREX 261:7
261:10 314:17,20	137:13 178:13	189:15 190:13	125:8 413:17	277:18 278:3,13
316:13 320:6,22	193:7	208:17 246:11,13	propose 32:8 35:18	purified 292:8
priori 138:5 140:13	procedures 130:18	246:14 362:1,2	45:14 117:19	purist 62:14
prioritize 141:6	178:12 179:21	367:3 369:14,20	118:4	purpose 10:22
priority 381:20	194:7	370:10,11,16	proposed 44:2 85:5	50:18 74:20 310:1
420:8	proceed 142:11	371:18 372:1,20	proposing 31:10	purposes 215:19
Privacy 9:10 13:22	proceeding 420:16	377:22 378:9,12	prostate 93:14	361:12 381:10
14:4 392:14	process 21:22 54:7	381:16	protect 294:3	pushing 105:3,7
410:20 411:17	55:12 59:11 73:16	production-type	protection 247:6	122:15
probability 38:7,12	93:13 120:17	350:1	291:11	put 9:22 15:12
89:8,11,22 91:14	135:17 182:15	productive 80:5	protective 82:3	17:12 42:19 61:13
91:18 92:2 123:2	198:22 216:3	products 22:9	protocol 137:11,12	61:15 62:13 65:21
267:15 270:21	229:14 231:14,19	116:15 261:8	180:13	82:19 102:17
272:14	243:21 247:13,20	275:7 276:7,9	protocols 180:9	128:20 134:16
probably 8:22 11:9	247:21 248:6,12	278:14 280:22	protracted 243:7	144:6 146:20
12:8 33:6 34:3	268:18 276:3	281:2 282:2 286:3	proverbial 33:10	160:22 165:15
52:6 53:11 62:9	278:17 280:19	286:8,10 289:15	provide 74:6 92:14	191:3,3 193:2
84:8 106:5 107:22	285:22 288:4	292:2,3 293:1,9	192:17 193:15,18	203:2 204:18
114:18 119:17	298:6,22 301:14	293:11 294:19	211:8 277:19	207:4 217:6
125:9 143:20	307:4 315:12	315:3	302:11 376:13	229:14 236:1
145:14 171:6	330:12 349:4	professional 259:9	406:18	258:11 266:22
179:11 205:2	356:4,12 366:1	professionals	provided 192:20	267:22 303:16
207:11 220:18	370:10 414:2	229:17	363:22 383:5	342:16 343:3
241:16 267:3	processed 236:21	profile 60:19,19	384:6 408:2	356:5 358:4,6
275:18 285:13,17	252:8 266:7 270:9	186:18 209:7	provides 211:6	378:21 401:2
294:20 308:17	279:15 307:15	226:2 308:9	337:19 367:15,22	411:22 415:3
326:4,12 344:1	processes 193:6	312:19 313:3	providing 278:17	puts 253:3 388:2
360:9 378:20	301:13 367:11	348:4,13 351:7	public 7:16 8:3,16	putting 206:5,18,19
383:15 395:21	368:1	352:1,5,7 356:2	9:9 11:17 190:21	p.m 199:16,17
401:2 403:9,12	processing 223:17	377:18 389:17	223:22 326:18,19	303:20,20 421:8
409:2	224:16,17 268:14	progeny 325:20	published 224:1,6	
probe 290:19	275:6 276:21	326:1 340:17	Pugh 257:7	Q
problem 27:18	278:9 289:12	341:18	pull 28:11 63:12	qualifies 234:3
28:18,20 29:2,11	368:22	program 53:14	66:5 77:4 85:19	qualitatively 189:6
39:17 41:1 71:13	processors 277:5	59:7 152:21 180:7	88:19 96:10 97:5	274:19
79:12 81:13	produce 120:3	201:16 246:21	97:10 109:7	quality 180:5,7
113:20 128:11	produced 145:10	349:14 358:20	191:13 235:1	358:9
143:19 156:1,15	290:2 338:22	359:3	284:3 300:22	quantify 110:10
156:17 160:18	370:20 371:21	project 326:17	pulled 111:14	quantitatively
172:2,12 173:12	producing 223:18	327:7	pulling 111:14	257:12
179:4 213:16	233:8 370:8	promoted 209:21	113:12 151:12	quantities 222:7
232:7 275:4	product 116:8	prone 345:7	pump 340:17,21	224:3 227:3 233:6
347:12 388:9	122:1 202:4 261:6	proof 177:17 185:7	341:7	quantity 152:16
problems 27:17	279:2 281:6,20	properties 337:8	pumping 354:2	quantum 339:20
53:14 232:17,19	290:2 292:12	property 100:22	pumps 314:22	quarter 24:16,20

Neal R. Gross \& Co., Inc.
(202) 234-4433

132:21 153:2	65:10 83:5 84:13	189:22 244:1	recommendation	reconstructors
253:13 258:17	84:18 90:14 91:22	246:7 251:14	231:12 234:13	94:16 176:11
263:16 266:20	98:12 108:5	252:22 268:21	368:4 415:6	214:14
267:2 270:13	116:11 129:21	275:13 278:16	recommendations	reconvene 117:15
391:21 392:9,13	137:20 167:20,22	321:21 384:10	368:6	199:12
392:15 393:3	171:6 179:17,22	389:15,15 391:13	reconstruct 19:10	reconvening
394:20 395:6,8,8	188:2 192:12	409:3,4	19:14 41:7 42:11	118:19
395:11 396:19,20	196:10 197:3,8	reasonable 21:9	53:20 80:18	record 40:7 46:14
410:6,19,22 411:4	203:9 206:13	101:3 125:10	102:19 122:20	49:1 88:3 118:14
411:17	225:6 227:22	148:13 213:14	129:21 155:17	149:6 173:10
Ray $2: 13$ 7:17,20	231:8 242:15,16	254:6	169:15 185:19	183:2 184:3,8
127:8	245:9 254:7 259:5	reasonably 42:19	259:8 271:16	192:18 199:15
reach 35:1 207:15	271:4 272:20	58:22 340:2	272:3 294:4	214:15,16 222:11
reached 334:22	280:11 283:5,6,13	reasoning 263:17	298:17 306:6	240:19 303:19
reaction 198:6	287:4 290:18	reasons 189:14	348:2 350:11	376:21 381:6,21
reactor 232:15	292:3 295:22	190:16 242:4,5	359:1 371:12	384:4
268:4 336:22	299:9 307:9 308:9	268:22 270:6	385:15	recorded 184:12
reactors 325:7	308:11 313:21	305:6 359:8	reconstructed 17:4	237:13 363:5
read 14:21 44:15	323:8 326:1	reassessment	85:3 270:22	records 33:22 34:6
47:2 102:13 147:4	327:22 330:9	308:15	329:15 351:17	42:1,10 46:5,6
147:13 149:5	335:21 337:14	rebuttal 333:16	reconstructing	63:13 88:2 90:13
217:22 218:1,15	344:5,7 346:13	334:12	165:18	94:1,1,3,11 102:1
226:6 227:21	347:14 349:5	recalculate 383:15	reconstruction	102:3 107:15
240:19 312:20	353:10 354:1	383:16	37:17 38:6,16	149:3,15 150:19
313:1 314:13	358:21 361:8	recall 27:11 97:2	88:7 89:12 91:19	155:16,17 156:2
322:7 416:13	362:3,8,11,20	108:14 172:7	123:2 126:2	157:7 163:4
readable 218:16	363:1 364:13,20	309:21 326:19	155:12 156:21	164:12,13 169:16
reading 206:12,13	365:10,17 367:4	419:11	168:12,20 175:16	180:15 184:17,19
317:19,19 319:4,5	367:22 368:13,22	recap 40:20 359:11	175:19 177:18	185:9,12,14
319:10 321:7	369:13 371:12	receipt $244: 7$	178:9 182:12,20	190:22 195:3
343:17	372:13,14,14	receipts 224:10	186:13 193:20	196:10 222:15
readings 359:4	374:22 375:16	receive 59:12 94:17	197:14 210:1,2,3	282:5 306:10
ready 61:6 160:21	376:10,20 378:18	229:12	215:3,10 225:4	315:17 381:8
297:8	379:9 380:6 381:1	received 12:15	267:7 271:7,21	382:5 385:14
real 34:9 115:20	381:3,6 384:5	37:17,18 38:6,14	301:18 302:9	recovered 165:7
238:15 240:21	389:13,14 390:6,8	94:18 215:1 228:6	326:17,21 327:2,6	recovering 228:13
300:6 326:3 353:6	390:14 391:12	230:3 244:22	352:16 356:18	recovery 244:13
388:11 413:15	400:13 401:9	248:21 357:16	359:21 361:12	248:7,9,17
realistic 294:6	402:18,20 408:6	370:15	362:14 414:6	recreate 127:14
reality 291:6 325:7	408:16 412:11	recharacterize	reconstructions	145:1
400:19 401:10	413:4,7,10 415:12	404:14	30:15 84:5 91:10	recurring 29:11,13
realization 355:14	416:21	recognize 264:8	91:12,13 175:12	61:2
realize 49:19 332:2	reason 35:12 41:3	recognized 224:1	177:21 182:3,5	recycle 223:3
realized 355:9	42:4,5 52:9 56:17	recognizing 360:2	192:15 267:10	recycled 10:1 14:15
really 10:22 18:6	58:15 96:18	recollection 96:16	272:8	22:3,12,16 50:10
29:19 32:4 33:17	111:18 142:1	146:5 173:9	reconstructor	117:16 118:3,7
49:9 52:21 60:17	157:9 176:18	329:20	109:2	136:8 165:18,19

Neal R. Gross \& Co., Inc.
(202) 234-4433

215:4 216:4 222:7	134:21	release 313:12,13	removing 315:13	307:13 308:4,10
223:12,14,15,18	references 102:9	324:16 326:8	320:11	308:11,13,17,22
225:16 226:9	152:9 164:17	333:6 337:5	renal 101:14,19,22	309:3,4,7 310:13
228:7,18,20 229:2	239:14	released 313:9	repeat 5:5 64:15	313:10,19 314:7
229:2,4,6,15	referring 148:22	314:4 332:20	repeated 311:20	314:12,14,15
230:1,2,11,14,18	217:14 250:3	335:15 336:1,16	417:20,21	316:1,3 322:12,21
231:2,5,9,15,20	refers 218:18 307:9	releases 304:18	repeating 384:15	324:10,15,21
232:5,8,12,13,21	refine 105:14	306:20 308:8	417:13	326:14 329:2,8,10
233:2,7,15 234:3	refinery 71:21	relevant 195:19	replication 316:3	334:3 354:13
234:8,10 235:6,12	370:8	275:11,21 393:2	report 10:11,14	368:20,21 369:4
235:21 236:3,8,11	refit 277:15	reliable 162:21	11:2,3,8,9 13:3	369:17 370:14
237:3,4,8,10	reflects 25:22	325:5	14:2,5 19:1,2	371:4,19 374:6
240:10 241:11	307:10	relied 329:22	22:17,19 26:20	392:21 393:7
247:13 248:1	regard 197:18	rely 42:2 260:8	38:1 41:19 46:13	397:5 401:5 410:3
254:21 256:9,15	202:6 317:1 332:8	333:1 366:1	46:19 68:14 79:1	415:4,20 416:1
256:21 257:12,17	404:21	remain 331:9	92:13 115:16	reported 147:7
258:12 259:4	regarding 22:16	348:14	117:22 118:21	245:2 250:2
265:4 268:2,17	50:10 51:1 137:16	remaining 150:7	121:22 133:3,13	297:19 332:8
274:19,21 290:5	147:6 192:20	remains 187:17	133:16 135:6	333:15
296:16 297:4	196:19 197:6	331:17 345:10	136:18 149:20	REPORTER
300:20,21 301:21	272:21 280:11	357:5,6	164:18 174:14,16	385:17
303:7 304:8	314:4 325:9 328:2	remediating	174:17,18,18	reporting 262:7
recycling 215:15	regardless 110:5	127:18	176:10 215:1	reports 11:19
215:16 289:6	124:11 347:19	remediation	216:5,11 220:18	184:10 216:15
red 57:21	regards 376:16	127:13 368:8	224:6,8,8,11,19	222:2,3,4 224:1
reduce 171:22	regress 185:15	remelted 232:11	226:8,21 227:1,12	227:9,10,16 242:6
173:15 310:5	regroup 154:20	remember 34:7	227:15 229:3,6,12	242:15,17,17,18
315:6,12 340:18	regular 108:19,20	77:12 108:15	229:13,14,22	253:8 262:15
368:9 401:9	regulations 59:5	114:10 116:4	230:8,16 231:18	263:1,18 265:9,9
reduced 248:3	60:12 225:10	146:22 147:7,9,13	235:1,3,5,5 236:1	265:17 266:12
318:17 319:6,13	261:5	161:4 183:10	236:3 238:18,20	360:12,16,20
reduces 315:4	regulatory 59:16	187:4 189:12	239:10,12,22	361:1 362:21
339:22	59:18 60:13	246:3 262:14,16	240:1,4,5 241:2	364:12 366:20
reduction 261:9	reiterate 417:12	262:20 290:16	243:10 245:3	367:4 368:12
320:16 339:21	reiterated 357:13	309:21 317:10	247:19 249:11	371:7 372:17
340:10 346:3	rejection 213:17	351:15 387:11	253:10 255:22	376:1,6,22 381:13
355:3	relate 362:18	remembered 284:5	256:8,9 257:2,19	382:8 389:12
ref 239:6	372:16	326:16	257:21 258:1,4,6	395:14 403:10,10
refer 310:12	related 146:21	remmbering	258:11 260:6,9,9	405:4 406:19
314:19 318:3	215:2 356:18,19	189:4	260:13,14,17	415:22
reference 96:19	369:20 376:13	remind 8:21 229:9	262:4,8,11 264:19	represent 99:9
133:18 164:21	377:2,3 398:1	260:22 265:11	265:1,5,12 266:22	102:2 241:12
165:5 238:10	relation 370:3	347:20	269:14,15,16,21	310:22 318:21
239:17 248:19	relationships 280:6	reminding 352:12	283:18,19 284:3,6	334:17 354:16
308:12 312:18	relative 275:22	removal 318:14	285:2,11,19	376:1 404:11
313:10 314:12	relatively 21:15	removed 341:8	299:16,22 300:14	representation
referenced 134:6	323:15	removes 315:2	302:6 306:8 307:9	26:9,10

representative	357:12,15	reverse 79:13	232:16,20 233:12	92:18 94:6,7 95:5
31:16 123:9	respond 226:19	review 15:19 86:13	234:12,21 235:10	100:14 101:9,16
represented 62:8	276:17 347:2	121:22 132:20	235:13,18,22	105:19 106:9
234:16	responded 115:1	135:1 136:1,13,18	236:9,14,17,20	110:9 116:17
representing	response 4:11 5:16	149:1 151:8	237:3,7 238:12	126:11,12 127:12
334:18 394:15	8:18 74:14 220:4	152:19 155:20	239:1,3,7,11,19	129:12 130:2
represents 280:9	220:14,17,21	165:4 170:1	240:2,5,8,12,15	131:9 134:2
360:15	221:5,8 231:16	178:11,20 183:16	240:20 242:9	137:18 138:20
reprocess 244:12	238:3 296:5	197:2 211:15	243:8 247:7,11	139:3,10,22
reprocessed 248:6	336:22 347:5	215:2,7 220:1,5	249:1 250:18,22	140:11,18 142:13
reprocessing	384:14	222:6 226:1	251:6,21 252:2	143:8 146:19
248:12 276:4	responses 115:12	233:18,22 240:9	253:18 254:5,18	148:18 151:11
reproduced 217:16	115:13	295:21 296:19	255:6,10,13,19,22	152:4,4,17 153:2
226:22 227:7	responsibility	302:19,21 303:10	256:5,12 257:1,18	153:15,22 154:6
266:11	255:14,16	304:7 307:12,14	258:1,10,18	154:19 157:12,20
request 149:19	responsible 299:3	307:20 308:19	260:16,20 261:18	158:3,14 160:2,7
294:10	responsive 353:4	324:20 326:14,21	262:1,6,10,19	162:6,16 165:6
requested 405:9	rest 212:19 244:17	327:17 330:12	263:2,5,20 264:12	167:1,13 168:21
require 408:8	244:19 377:3	346:22 347:2	264:21 265:11,21	170:11,11,18
required 59:4	384:9 413:4	356:12 360:18	266:4,13 269:19	172:3 173:14
93:16 225:10	restricted 60:13	361:9 364:11,11	276:17,20 279:16	175:20 176:3,21
requirement 268:6	result 44:6 54:19	377:19 390:10	281:17 282:7	177:19,22 178:1
requirements	74:1 105:11 150:9	403:4 412:1	283:17 284:17	179:11 183:10
90:22 115:6	162:18 308:1	419:19 420:17,19	285:3 286:12	185:3 186:6 187:3
requires 197:3	310:8 340:2,9	420:21	287:5,11,15 288:2	187:4 189:4 190:9
resample 145:1	359:11	reviewed 46:15	288:13 289:7,11	191:17,21 193:11
148:15	resulted 36:7	169:12 170:4	290:6 292:19	196:14 197:22
research 134:14	327:10	183:3,13 184:2	293:3,10,18	198:20 203:5,21
152:2 153:10,19	results 32:18 107:2	195:21 222:2	294:18 295:2	206:4,7 207:11
165:7	140:10 149:22	305:7 327:1 346:9	302:2,5 303:5	210:11,16,18
resend 217:1	150:3,14 153:8	reviewing 14:12	Richard 222:15	211:6,14 212:15
resident 338:2	165:12,14,17	102:15,16 133:8	rid 419:10	213:5 214:1,6,15
residue 250:20	169:2 269:17	135:5 206:2	Ridge 223:8 299:22	215:9 218:9
resolution 69:16	283:1 284:10	376:19	right 10:15,18,22	219:16 226:20
77:13 102:12	315:18 380:6	reviews 178:9	11:4 14:13,19	230:10 231:7
379:1	385:8 397:17	190:5	15:16 24:2,4	237:15 240:12
resolve 117:6	resumed 40:8	revised 308:3	25:19 31:5 35:4	254:18 259:15,15
233:13 356:10	118:15 199:16	re-evaluating	36:18,20 39:21	260:19 261:19
resolved 388:19	303:20	259:2	46:1,1,19,19 49:6	264:6 268:20
resolving 362:8	retention 335:18	rich 2:4 5:2,2,6,6,7	49:6 51:11,19	270:4 274:6,14
resort 30:21	336:4	5:8 27:5 40:15	55:22 56:10 61:17	282:8 284:20,20
resources 97:16	retorts 364:18	219:18,19,21	61:19 64:13 67:21	287:10,20 291:6
98:14 141:4	return 188:3	220:3,8,12 221:15	67:22 68:1 70:20	293:20 302:16,17
respect 296:16	returned 199:21	222:19,22 226:15	73:1 79:6,16 80:2	302:20 303:9,13
327:18 330:10	returns 13:5	226:17,19 227:8	81:9 85:10,16	303:14 305:8
respiratory $247: 6$	reused 232:11	228:15 229:1	87:2 88:16,20	310:20 316:22
291:11 349:14	revealed 172:16	230:4,10 231:12	90:13,19 91:20	343:10,12 347:19

Neal R. Gross \& Co., Inc.
(202) 234-4433

352:7 353:20	144:14,18 148:20	RT 318:5	146:22 148:7,13	382:20 383:2
383:19 388:10	150:18 151:2,7,10	RTS 314:19,19,21	152:12 160:5	384:19 385:7
393:20 394:1,5	151:16 152:1,5,14	318:20 319:4,10	161:18 166:21	386:16 389:11,20
395:19,19 400:3	152:18 153:13,17	319:12,15 320:2	179:10 180:9	390:6 391:10,11
401:7,12 404:15	154:7,18 164:7	320:12 328:17	185:9,22 186:5	392:3 394:18
404:20 407:5	165:3,9 174:11	332:14 339:21	188:20 189:18	395:9,15 398:19
415:7 416:16	175:2,8,15 176:3	340:7,11 341:3	193:18 212:4	sampling 9:22
418:14	186:17 221:7	346:4 354:15,20	213:1,16 243:17	10:10 11:14 14:15
right-hand 51:16	246:18 259:1,15	355:2,9,16	243:21 286:19,20	16:2,5,10,10
rigor 191:2	259:20 267:5	RU 10:10 214:21	297:22 363:20	17:14,19 18:16
rigorously 283:8	268:20 270:17	222:1,16 257:4	364:12 373:8	26:21 31:1 33:9
ring 290:21	273:2 277:4 298:9	rudimentary	384:5 385:1 393:7	43:20 44:2,5
rise 331:18	298:16 300:10	111:10	394:2 396:7	53:15 54:3,14
rises 23:12	338:20 339:10,14	rule 30:13	sampled 54:14	61:10 72:9 74:2,7
River 224:14	348:1,16 349:2	run 20:18 122:6,12	56:17 101:6 138:3	83:2 84:12 104:15
RMI 262:11	357:10 392:18	122:17 248:14,16	151:19 152:10,16	131:11,19 137:10
road 415:10	393:1,5,17,21	334:5 340:6 355:2	158:22 159:12	139:6,14 141:9
Robert 1:21 2:3 4:3	395:5,12 396:9,13	378:15 380:7	162:13 166:3	143:13 144:13
4:18	397:3,8 405:12	running 161:22	171:14 175:9	146:21 149:13,15
robust 30:22 32:9	410:1,15,19	244:11 347:6	178:3 181:1 264:5	155:15 158:12
45:1 108:13	411:11,15 412:4	ruthenium 279:22	282:20 285:6,8	159:8 160:11,18
137:21 204:2	412:10,15 415:14	281:10	314:16	161:15 162:8
390:5 413:12	416:1,4,9,17,20		samples 18:5 26:1	171:11 178:22
robustness 385:1	417:1,4,7,10,17	S	27:22 28:3 44:10	184:19 191:8
Rocky 39:19 43:8	417:19 418:2,6	S 3:1 19:21 20:6,11	48:3 49:10 50:15	195:5,6 200:4
155:6,9,14,20	419:2,11,15,21	377:10,15	51:6,17,21 52:18	213:17 264:3
159:6,11,18 160:3	420:4	safe 103:1	53:2 55:15 56:8	288:5 306:5
163:13 171:19	roll 3:14	SAFETY 1:8	56:22 57:2,5,10	310:18 312:6
172:3,8 181:13	rolled 24:18 49:19	sake 139:16 314:8	58:4,7,13 61:3	360:4,21 362:13
189:12 190:4	49:20 61:22 62:1	316:5 324:8	64:6,7,7 66:1,6	367:12 369:18
202:10	68:10	Sam 305:5 324:21	71:22 77:11,18	370:6 390:21
Rolfes 2:2 4:16,16	rolling 27:20	324:22 333:15	79:13 99:3,9	393:11 394:20
25:9,11 37:13	370:22	334:3,9,20 335:12	100:12 114:12	Sandra 2:15 8:5,7
38:3 56:4,6,11	roll-up 56:21 76:3	337:11	125:15 128:8,9	12:13,14 98:22
60:14 70:16,21	room 1:15 3:15	sample 18:5,7,8,9,9	138:22 139:2,18	99:15,16,17 102:6
74:21 88:20 89:3	4:12 5:18 7:3,15	18:12 34:18 35:11	139:19 140:16	380:8,11
89:5 90:15,20	9:8 13:15 41:1	42:12 44:21,22	156:12 157:15	satisfactorily 178:4
91:4,8 92:7,18	289:6 374:20	45:15 52:9 54:16	158:6,9 179:20	satisfied 251:7
93:3 94:14 102:5	rooms 365:4	60:7 76:21 77:17	184:4 185:1	Savannah 224:14
104:21 106:18	roughly 34:1 38:10	80:6 81:14 84:13	188:18 191:15,16	saw 145:22 146:2
110:19 112:4	338:5,17 360:12	99:21 100:3,7,8	201:7 204:1,1	171:20 255:2
114:21 116:18	416:9	100:16 103:19	237:20 288:14	297:3 323:11
122:21 123:14,21	round 377:14	104:21 105:1,5	300:1 323:1,12	saying 33:16 34:16
125:17 126:9,15	route 122:12	106:12,13 113:18	358:18 363:8,10	35:10 36:15,19
128:12,19 130:2	routinely 186:20	123:8 138:10,14	363:18 365:1	37:14 40:2 44:15
134:3,8,12,15	rows 249:19 310:19	139:18 140:8,16	373:7,11,16,18	55:12,18 62:14
135:3 143:16	Roy 2:12 7:8,10	144:5 145:4	374:7 375:4,11,16	65:20,22 66:4

Neal R. Gross \& Co., Inc.
(202) 234-4433

83:7 85:17 98:16	scenarios 272:15	sealing 353:19	104:9 106:9	159:15
98:17,18 102:21	273:10	search 89:9 211:10	109:12 110:6,13	selected 150:8
110:4,17 128:17	Schofield 1:22 4:5	Searches 315:17	112:21 117:20	153:16 280:8
157:17 158:2	4:6 144:1 301:5	searching 113:20	123:12 141:7	404:10
166:19 176:13	Science 328:22	164:7	142:21 144:20	selective 159:8
181:8 182:1 183:8	Sciences 326:20	seat 143:21	145:21 146:16	359:22 360:21
186:2 189:16,17	327:1,16 346:10	SEC 7:15 60:15,17	147:4,5 148:10,10	selectively $75: 1$
193:9 194:4	scientific 322:4	92:13 122:5,14	151:17 156:9,16	110:22
196:21 202:6	347:15	125:21 126:6	177:14 179:4	self 8:3
203:9 207:11	scientifically $327: 7$	127:1 129:3,20	199:11 200:15,17	self-identify 7:16
209:5 212:8 229:5	scientist 330:11	157:10 208:7	201:14 203:18,19	send 11:18 217:2,3
230:15 236:13	scrap 232:9 236:21	307:12 326:7	205:5 209:19	218:14 228:19
243:2 249:3 251:4	screaming 343:9	346:7 348:14	210:4 212:12	230:8 261:20
251:7 265:15	screen 18:22	356:3,11,12 404:1	217:13 219:1	410:5 418:20
269:12 272:20	218:16 309:1	second 125:13	224:9 227:15,21	sending 296:4
279:13 284:13	313:1 352:20	148:21 185:4	228:3,6,8 236:12	315:8
292:16 293:22	SC\&A 2:5,6,6,7,8,8	219:7 257:5	239:19 241:4	sense 22:21 61:9
331:10 332:19	2:9,9,10 5:18,19	269:10 277:7	247:15 249:18	75:22 88:12 107:9
334:1,9 337:17	6:6,10,11,14,19	278:21 310:20	250:8 258:4,14	109:5,12 113:8
340:16 342:10	6:22 9:22 10:4	316:9 332:7	286:7 288:13	137:9 138:2
351:21 352:1	12:20 16:9 23:13	360:11 369:13	296:3,3 297:10	140:22 161:18
353:16 354:18	27:9 74:11 84:11	387:11 390:16	299:13 300:17	174:9 175:12,14
355:19 386:14	111:13 112:13	415:4	301:19 310:19,21	180:5 206:21
392:9 396:15	115:10 119:16	secondary 197:16	311:9,16 312:4	237:4 256:21
says 20:7 24:12	120:8 121:22	233:19	314:6 316:5,19	291:9 303:7 344:5
54:19 63:3,3,20	132:20 133:8	seconds 318:1	317:1,3,4 319:5	344:7,16,16,22
64:20 88:4 153:7	134:1 135:5	secretary 106:11	320:20 321:1,6	414:21
164:11 178:13	145:19 174:2	section 135:1 230:5	322:5,10,12,15	sent 10:5 16:3
216:17,18 217:16	196:18 198:14	230:11 235:13	335:12 342:11,14	46:21 115:9
218:18 227:16	200:4 212:4 235:3	238:13 256:14,17	346:1 353:13	228:19 237:1
228:22 229:1	260:12 270:11	256:20 312:19	354:9 360:13	244:17 253:16
230:1,2 235:6	274:1 285:11	314:10 368:4	369:12 372:4	261:13 268:4
241:3 255:12,18	303:3 304:7	sections 335:13	374:22 375:3,9,22	289:16 370:17,21
256:10 257:6,11	306:21 308:2	367:8	376:17 379:20	sentence 219:11
258:7 267:1 284:7	347:2 352:3 356:2	security 34:15 58:1	381:11 383:22	257:6
285:19 306:22	356:20 390:16	86:18 187:5,7	386:6 388:5 389:8	separate 22:17
311:13 314:15	412:16 419:19	see 19:7 24:8 26:4	397:9 399:3,5	112:10 205:19
355:1 385:12	420:17	30:8 32:8 35:12	405:13,18,19	264:9 277:9 292:4
386:12 392:13	SC\&A's 178:20	38:5,20 51:19	411:12 412:17	350:22 390:14
419:5,18	215:2 219:22	53:13 54:6,16	415:20 416:11	391:19 395:15
scale 273:3	239:14	56:3 58:5,10 59:3	418:14	separated 276:6,9
scaling 356:21	se 158:8 229:4	60:5 63:2 64:21	seeing 97:3 249:22	278:7 279:15
357:4	seal 316:15 320:7	66:1 72:1 76:4	348:21 354:3	separately $28: 12$
scanned 46:6,10	345:8	77:2 80:19 82:22	seen 97:13 132:17	251:18
137:1,4 149:22	sealed 245:7	83:2,9 85:3,10	266:9 299:1	separation 276:22
153:8 218:2	309:17 342:9	93:5,7 94:10	segue 381:5	277:1,16 278:18
scenario 273:17	353:12	95:17 103:20	select 139:17	separations 280:19

Neal R. Gross \& Co., Inc.
(202) 234-4433

281:3	408:19	showing 46:16	353:11	226:10 234:3
sequence 387:4	shifted 45:2 282:14	172:13 353:17	similar 130:20	255:16 262:12
series 265:4 310:19	ship 282:9	shown 241:18	155:9 161:17	268:5,13
315:1 317:12	shipment 233:20	359:4	162:15 174:19	sitting 87:10
363:9	255:4 261:4,10	shows 53:10 62:19	340:12 371:6	187:18 193:9
serious 122:19	299:21	75:14 89:1 157:13	372:22 377:16	284:4 342:7
320:6	shipments 224:12	222:6 226:8	403:12	situation 39:19
seriously 265:10	226:13 227:17	227:12,20 286:18	similarity 301:13	108:11 189:7
serve 345:22	228:10,15 229:4,7	370:15 375:7	simple 165:21	291:7 365:7
served 266:22	230:2,3,13 235:20	side 20:21 41:13,17	231:21	387:21 403:1
SERVICES 1:3	244:22 254:14	52:20 59:9 87:10	simplicity 316:5	situations 386:10
set 46:12 71:4,5	257:4 265:19	297:21 298:1	simply 63:22 74:4	six 9:2 21:13 86:21
78:13 211:5,9	276:15 293:15	316:22 321:2	74:14 148:5	162:13 169:3
219:14 222:1	299:9 300:3	348:12 352:2,8	193:21 233:1,14	173:21 196:4
223:4 242:14	shipped 222:11	386:8,17 401:9	244:17 313:16	305:14,15 311:21
245:1 246:19	225:14 228:4	sideline 109:12	318:3	312:16 329:6
270:7,13 276:13	237:18 268:12	sides 112:10	simulates 345:3	357:3 366:6
280:10 312:8	281:7,19 293:6	significance 172:1	Simultaneous	380:14,16 384:8
337:1 360:21	shipper 262:16	significant 29:19	213:3 255:5	405:11 407:18
361:19 362:18	265:22	52:7 150:10	single 183:20	417:4
382:1 390:14	shipper's 265:13	169:11 259:6	215:19 233:1	sixteen 373:15,19
391:11,19 392:4	shipping 224:13,18	271:5 273:4	256:16 323:2,3	374:2
397:12,14 398:2,4	225:9 227:2,9	333:10 348:22	373:8 395:7	Sixteenth 399:22
398:20 404:11	237:16 255:16,20	357:11	singles 41:10	sixties 274:20
406:2,4 413:12	263:7 299:2	significantly	$\boldsymbol{\operatorname { s i r }}$ 48:1 51:11	317:9
sets 50:4 95:16	ships 254:21	323:17 324:15	385:17	six-inch 336:11
312:7	Shonka 282:11	signing 114:16	sit 115:21 210:14	size 138:10,14
settled 244:1	short 118:19 130:1	Sill 322:6	site 7:18 30:8 37:20	186:4 189:18
settling 277:2	192:21 244:11	silly $288: 19$	43:3 58:12 60:18	248:16 325:10
seven 3:10 21:13	294:8 311:6	silo 309:15 311:7	60:19 113:3 126:4	370:7 385:1
84:20 224:10	364:16 379:7,16	311:15 312:3	152:2 153:10,19	sized 379:9
227:1 310:14	393:18	314:16,21 315:5	155:9 162:9 165:7	sizes 166:21
377:18	shortly 11:4	315:19 317:13	186:18 188:21,22	skip 117:18 211:19
seventies 254:13	short-lived 340:4,8	318:6,9,16 319:1	209:1,7,7 216:2	317:13
274:21	340:17	335:18 342:16,18	226:1 232:22	slab 345:17
seventy 317:9	show 23:16 34:22	344:17 350:13,19	233:9 245:14	slurry 278:6,7,8
shaded 64:22 80:12	50:19 54:15 76:17	353:18 354:17	254:20 265:18	slushing 202:3
shading 376:6	102:3 175:21	silos 10:1,14 304:18	274:18 299:2	small 21:15 31:18
shapes 371:1	176:9 177:10	305:2 306:21	308:8 312:19	36:10 103:20
share 142:4 247:8	184:10 218:6	307:16 309:5,10	313:3 348:4,13	107:9 114:12,19
375:1	260:14 337:12	309:20 310:5	350:20 351:7	139:11 160:5
shed 232:3 345:2	376:9 380:21	313:5,9,15 314:22	352:1,4,6 356:2	162:19 164:2
sheet 412:18	389:12 403:18	315:4,7,9,10	356:22 370:22	165:21 172:4
sheets 149:18 396:1	414:2	320:7 321:5,10	371:1 377:18	213:16 226:12
408:9 413:6	showed 26:6 80:12	323:13 324:5,17	383:6 389:17	227:3 270:18
she'll 10:19	190:4 248:13	330:20 343:6	sites 59:22 97:13	273:8 290:1
shift 361:21 408:17	389:18 411:2	347:22 349:3,20	224:4,13,20 225:9	296:12 349:8

smaller 379:10
smallest 345:9
snapshot 57:20 201:13 362:4 372:3 414:14
social 34:15 58:1
sole 349:3
solely 271:6
solid 39:4 298:12
solubility 103:6
197:12
soluble 103:3
solution 122:8
solve 344:2
solvent 379:13
somebody 51:7 209:20 388:1 413:18
somebody's 328:20
someone's 165:18 271:17,22
something's 344:11
somewhat 67:2,3
70:11 79:21 212:8 312:7 327:12
soon 13:4 228:12 245:11
sooner 344:12
sophisticated 344:8
sorry 3:9 5:4 8:13 40:22 50:6 57:11 61:15 64:6,14 88:8 138:13 194:20 357:21 373:14 392:14
sort 15:6,9 18:18 24:21 27:10 29:17 43:15,17 77:2 78:21 86:19 90:10 93:19 95:14 104:17 108:22 112:2 120:4,16 132:19 136:12 140:13 144:6 177:4,12 181:4,16 181:18 189:21 190:6,10 208:13

213:17 267:6
275:3 276:13
283:11 284:4,11
289:17 292:11
311:3 337:4
349:18 394:8
396:1 402:20 419:9
sorted 95:6,8 139:8 396:3
sorting 63:10 72:3 95:9
sound 213:13
241:12 327:8 381:9
sounds 43:2 143:4 146:19 214:20 238:3 291:1,18 351:22 414:22 415:7
source 137:1 219:5 325:6,19 341:9 349:3 383:12 399:6
sources 267:16,20 271:8,15 305:1
so-called 22:12 28:16
space 310:4,8 314:1
315:4,12 318:16
319:17 320:4,13
321:13 326:2
328:11 332:6,12
332:20 333:10
335:1,3,16,19,20
336:7 337:5 338:3
341:2,8 342:8
343:11 345:22 354:3 355:7
sparse 387:21
speak 3:17 6:1
13:20 14:1 21:19
72:5 116:20 117:1
117:8 124:15
184:16 221:11
258:2 340:14
speaker 398:11
speakers 213:3 \quad spreadsheet 94:21
255:5
speaking 9:1 98:22 250:5 256:3
speaks 257:22
special 126:1 143:1 248:18 249:4 251:16 254:8 270:8 273:21 284:14,15 291:1,2 291:3,7,10
specially 269:8 specific 17:2 216:14 231:17 237:19 246:21 264:17 282:16 307:1 348:6,8 366:15 367:19 374:11,12
specifically 133:8 161:2 169:17 229:18 233:4 244:21 266:21 302:9 350:12 388:10
specification 244:8 283:8 320:12
specifications 223:5,7 261:13 281:5,13,18,19 283:12 299:4 318:2
specificity 144:6 365:22
specified 47:4
specs 279:2
spectrometer 282:13,15
speeds 336:3
spelling 147:8,9
spend 57:14 172:6 225:13
spent 102:14 374:20
split 187:14
spread 384:21
401:14 402:4

110:21 133:18
206:1 361:17
372:7 383:17
392:15 395:7
396:14 410:4,8
415:13,15,21
spreadsheets 97:1
151:13 164:20,22
359:18 361:2,3
373:5 382:7 397:2
410:7,12 412:6
SRDB 239:5
SSNs 111:15
stack 53:22 286:5,6
286:17
stacks 286:8,9
staff 8:17
stage 14:16
stand 117:21 242:6
standard 20:13
25:20,21 28:1
29:16 104:17
143:11 243:19
standpoint 124:14 286:13 302:12 stands 43:12 362:5
star 9:2
start 14:14 15:15
15:16 16:1 18:19
20:8 33:16 36:21
50:12 61:8 63:10
66:21 72:12 73:16
108:13 130:9,20
137:21 138:12
140:9 148:18
154:2 156:16
172:14 193:6
200:12 226:7
237:16 256:14
303:15 317:21,22
334:21 367:9
369:13 398:17
started 27:9,10
28:19,19 60:2
66:12 75:22 128:3
206:18 212:9

215:17 226:10
227:2 228:12,12
231:3 237:16
275:2 277:13
278:1 330:18
359:3 379:17
404:4 417:11
starting 3:16 36:18
36:22 57:13 59:2
62:21 157:13
172:18 216:6
226:5 289:2,3
304:2 321:16,17
323:9 329:18,22
331:19
starts 230:12
250:13
stated 285:16 313:4
354:8 420:16
statement 43:21
44:11 73:15
137:16 139:15
226:11 234:18
354:12 355:1
statements 58:8
225:12 315:16
317:1
states 1:1 313:3
371:21
statistical 73:15
137:16 139:15
149:14 167:3
172:1 243:13
251:8 252:4
statistically 73:10
statistician 148:12
statisticians 143:6
statistician's 138:4
statistics 187:20
363:21 391:2
397:15
status 306:13
362:19
stay 14:7 61:19
67:5 131:18
208:16
stayed 103:9

127:17 342:2	289:1	study 135:16 136:9	substance 135:18	152:15 153:6
stays 102:22	stop 63:16 127:22	149:9,21 150:4,6	334:12	164:18 174:14
103:16	384:1 404:20	150:11 151:22	substantial 222:10	227:17 235:20
steered 182:16	stopped 318:9	153:7 168:9 195:2	361:4	247:13 256:6
step 39:9,10 74:18	379:16	224:5 350:16	substantially 62:6	309:4 311:21
113:7 120:12	storage 309:5	351:2,2,16 368:4	66:15,18 81:18	333:14 367:11,15
161:17 185:13	313:6	368:21 369:11	250:12	summation 375:4
214:20 221:19	stored 277:13	stuff 112:18 132:15	substantive 147:12	summed 381:17
223:1 244:9	story 57:7,16 121:2	190:3 208:19	subtask 363:11	super 210:10,10
399:11 413:2,3	121:6 193:4	209:1 225:21	sub-action 386:2	superceded 258:6
414:1,16 415:12	280:14 335:2	229:10 263:8	sub-issues 376:18	260:6,9
stepping 43:17	346:13	264:14 278:20	sub-slab 345:11	supervisor 98:16
stepwise 97:14	straight 230:20	290:1 297:17	successful 111:13	supplement 397:13
stick 61:18 415:4	straightforward	298:21 350:17,19	sucked 248:5	399:8
stirred 336:8	148:17 347:5	sub 206:13 382:3	sudden 131:18	supplemental
Stiver 2:8 6:11,11	strap 243:22	subcommittee	353:12	376:11
216:22 305:12,14	248:22 249:7,7	352:16	suddenly 205:7	supplementing
312:16 346:17	250:4,6,13 251:14	subcontractor	suffered 345:6	391:16
357:22 366:13,18	251:15 252:5	150:2	sufficient 24:21	supplied 322:4
371:16 373:15,19	253:8 264:18	subdividing 31:12	128:14 148:2	supply 274:13
373:22 374:5,13	269:1,3,6,17	subgroup 53:6,8	155:17 156:20	support 181:3
374:17 379:6,12	290:19,20 291:8	66:14	166:4 175:18	308:3 312:1
379:18 380:4,10	300:16	subgroups 52:6	176:19 185:18	324:12 384:7
380:15,19 382:21	strata 63:20 64:1	247:14	199:3 231:13	supporting 151:11
383:4,8,12,19	strategy 18:7 35:5	subject 22:17 333:8	358:22	suppose 122:3
384:3 385:19	stratified 139:18	388:7	sufficiently 101:19	159:15 288:20
386:13 387:12,18	stratum 312:9	subjective 112:22	337:1 385:16	supposed 179:7
388:14,18 389:5,8	stream 264:9 278:7	113:5	suggest 32:13,14	186:9 350:10
392:17 394:19	300:18 301:9	subjectiveness	109:9 198:4 212:7	394:15
395:20 396:3	streams 243:21	120:15	214:12 341:5	supposition 360:7
397:6,9,21 398:4	244:4,5 247:20	subjects 15:2 279:9	413:10	sure 10:6 13:2 14:2
398:16 399:1	248:6,12 252:3,8	279:19 304:17	suggested 97:1	14:7 15:1,13,19
400:7,17 402:15	252:13 254:8	305:17	107:9	25:1 31:8 42:9,13
402:17 405:1,8,13	287:18 298:6,14	submit 137:15	suggesting 142:2	44:19 52:11 69:4
405:19 406:4,9,13	300:19,21 301:1,3	296:20	suggestion 144:7	70:4 77:5 87:16
406:19 407:3,6,14	strengths 55:20	submitted 161:10	380:2	105:20 108:20
407:18 408:4,19	stretch 346:15	188:7	sulfate 315:1	109:15,16 111:7
409:1,13,21	strike 190:12	subpopulation	sum 363:15 364:3	113:5 117:9
410:11,17 411:3,7	striking 367:4	31:19 47:8	375:3	120:14 123:15
412:7,21 413:3,14	strip 52:18	subpopulations	summarize 324:3	128:19,21 131:17
413:19 414:7,13	strontium-90	31:13 32:6 81:15	summarized 259:3	140:6 145:11
415:11,18 416:5	281:22	124:10	315:20 322:20	154:5,18 158:1
416:15,18,21	structure 373:1	subsampling	391:5	178:15,21 184:18
417:2,5,8,15,18	377:20	136:20	summarizes 368:13	186:14,15 187:19
417:21 418:4,13	structured 49:13	subsequent 48:13	summarizing 285:8	191:3 194:2 198:7
420:20	studies 194:17	120:2	404:3	198:13 208:6,11
stock 244:19 246:3	351:2	subset 113:21	summary 149:6,20	209:11 211:12

212:18 213:18	176:8	378:6 380:22	316:13,14 322:8	389:14 390:3
218:7 220:7	systemic 103:12	381:1,11 382:3	323:12 358:5,19	394:3,3,16 396:2
225:19 267:3	155:22,22 156:17	389:18 390:13,13	363:11,18 368:21	396:4
276:19 284:1	179:4 181:15	397:10 405:2,19	388:16 390:6	tasked 115:2 133:6
294:3 297:21	systemically 156:1	406:1 408:10,11	395:15	133:8,11 175:3
300:10 302:4	176:1	410:2 413:6 415:6	talk 20:22 31:21	412:12
312:5,7 329:22	systems 42:21	415:19	45:15 54:11 61:9	tasking 141:3
348:14 353:2	277:3	tables 19:17 26:6	109:11 117:19	tasks 363:13,14,19
355:18 377:11		56:20 68:1 80:11	137:14 146:9	368:14 374:1,2
382:18 389:7	T	164:17 227:6	198:18 199:1	383:1
391:20 410:9	T 325:10	235:16 243:16	200:18 217:9	TBD 349:21 384:19
419:15	tab 78:21 133:17	367:14 390:12	220:11 221:4,6	TBDs 197:2
surety 233:17	table 16:9 19:7,8	tabling 192:11	230:12 310:12	TBT 277:16
surface 318:9	19:18 20:4,5,6,15	tail 212:17 244:12	343:1 351:11	team 4:13,19,21
surfaced 131:22	24:7,8,8,11,22	tailing 371:22	362:22 389:9	5:1,2,8,12,15
surfaces 341:22	26:3 27:3,13	tailings 322:9,11,20	talked 15:8 99:19	149:17 266:16,22
377:14	32:10 33:2 49:13	322:22 323:4	173:18 184:15	392:20
surprise 71:19	49:18 50:19 62:21	tails 245:7,14,20	200:10 246:7	tear-down 127:18
73:12	63:1 66:20 68:14	263:21 289:13	266:20 320:20	technetium 22:8
surprised 76:11	75:12 87:11 92:14	take 12:8 $26: 3$	384:3 400:20	237:14 243:12
surprises 54:17	114:6 128:20	35:11 38:20 47:20	talking 10:2 30:10	279:21
surprising 70:15	132:13 139:21	86:20 94:17 95:2	34:13,13 35:6	technetium-99
72:7 73:10 107:3	164:9 166:20	104:3 106:21	42:17 45:8,9,11	215:13
surrogate 255:3	167:9 183:19	117:12 142:7	48:4 55:21 93:2	technical 86:8
265:17 285:22	191:19 193:1	146:19 148:20	99:2 101:18 133:6	130:9 131:1
299:17 300:5,7	200:12,20 206:5,9	163:22 165:13	135:1 138:16	162:10 176:18
301:10	206:18 210:7	166:19 170:9	142:16 163:15	271:14 283:20
survey 405:16	217:9,16,21	180:19 211:16	167:6 170:8 171:9	318:2 337:16,21
suspect 53:9 97:6	218:18,21 219:3,4	244:18 249:8,8	171:11 174:22	338:21 339:6
285:12 341:14	221:20 224:9	268:1 284:2	180:18 192:13	350:15 386:19
switched 282:12	226:22 227:17	286:13 290:3	198:3 205:13	technically 60:19
system 88:22 93:2	228:6 229:1,22	302:16 303:12	229:16 234:5	technique 104:16
104:4 119:11	235:4,8,17,20	335:21 337:1	239:19 256:22	243:22 264:4
176:10,13 234:6	236:7 239:22	343:16,18 345:13	273:5,8,11 280:17	techniques 245:10
237:12 252:11	241:1 247:12,18	346:6 348:18	306:11 331:20	252:6 369:1
277:6,7,8 278:2,5	249:19,20 264:8	353:6 358:14	343:4 347:16	technology 277:18
309:22 310:2	268:16 280:13	372:5,8 379:22	394:14,18,19	277:22 278:10
314:18,22 315:6	284:5 309:3,14	383:17 387:13	395:1	Ted 3:6 8:10 40:9
315:11 317:22	310:13,17 311:21	388:13 399:11	talks 78:20	142:8 199:19
318:5 319:12	311:22 312:11,13	405:15 410:5,7	tanks 228:14 278:6	214:17 303:22
320:2 328:4,10	315:20,21 316:3,7	411:21 414:8	target 357:11	telephone 118:10
332:14 340:22	319:2 330:4 344:6	415:18 418:6	targeting 45:16	tell 40:14 57:15
343:12 346:4	351:14 352:11	taken 54:13 66:6	task 135:5,12	62:22 72:5 83:5
354:20 355:10,16	358:14 359:9	126:13 183:21	137:19 153:22	197:8,10,11 287:6
systematic 172:12	360:13 367:15,18	238:11 251:17	172:6 364:2	292:18 328:5,14
403:4	372:7,7,14 373:1	254:15 288:15	365:10 373:9	343:21 390:9
systematically	376:9,16 377:18	293:14 310:10	374:4 382:6,22	392:6 418:21

Neal R. Gross \& Co., Inc.
(202) 234-4433

419:22	7:11 12:18 25:13	324:20 341:10	135:5,12,22	329:17,18 330:8
telling 112:2 329:2	52:1 65:19 96:7	394:10 403:9	140:12 141:2	330:11 334:2,7
tells 83:2 328:19	155:1 170:13	408:16 418:19	143:10,16 144:14	335:5,6 338:11
396:7	199:6,13 234:18	things 3:11 8:20	144:16 145:18,22	339:9 348:11
temperature	240:20 402:16	13:17 15:7,8	147:17 148:2,14	350:10,17 352:3
245:18 325:3	421:6	26:19 27:17 28:18	152:7,13,14	356:5 357:13
336:2	thanks 138:12	29:17 46:4 61:11	153:21 154:12	371:7,12 376:7
temperature-dri...	151:9 194:22	67:1 72:9 74:13	155:6,19 156:15	380:1,2,20 381:17
337:2	195:13 237:22	76:16 84:3 97:17	158:7,20 159:3	384:1,14 387:2
ten 13:9 21:14	240:7,14 398:15	115:1,3 117:3	161:2,16,18 162:4	388:21 389:11
40:15,17 71:7	theme 29:11,13	126:13 128:20	162:14,20 163:8	390:8 393:12
118:11 156:12	61:2	141:5,6 156:17	167:5,14 168:7,9	394:7,17 398:5
169:4 191:8	THEODORE 1:23	181:9 184:14	171:5,20,22 172:9	400:2 402:14,22
tend 105:21 336:6	theoretically 123:9	187:14 197:12	173:14,15,15,18	403:8,9 404:2
346:10	theory 29:1 203:8	209:18 210:4,6,8	174:2,20,21 176:7	405:4 406:6
tended 112:1	407:21	210:9 242:12	177:17 178:8,15	412:10,13,15
tends 52:19 295:13	thermal-hydraulic	270:12 295:9	179:15,16,18	413:4 417:22
312:1	336:21	297:22 298:20	180:17 182:15	418:16 419:2
tension 160:19	thermal-hydraul...	308:20 311:5	184:21 185:6,19	420:7
ten-minute 117:12	336:20	345:21 354:9	185:21,22 186:1,3	thinking 29:10
term 196:7 289:19	they'd 165:6	361:15 362:21	186:17,22 187:18	99:17 111:9
294:10 325:19	236:22	388:15 392:11	187:21 188:13,17	138:21 139:4
341:9	thin 146:15	406:17 408:6	188:20 191:5	173:9 208:6
terms 16:12,15	thing 19:1 51:4	414:3 418:21	193:22 194:2,5,9	292:17 403:17
24:13 26:22 50:7	55:20 66:2 71:2	think 8:21 11:10	194:11,13 195:9	third 167:6 277:15
71:11,15 78:6	76:18 83:1,3	15:14 23:2,22	196:13 198:5,10	278:4,11 410:12
107:4 136:19	86:19 108:22	28:20 32:3,19	199:3 202:8,10	410:13 411:13
138:22 167:20	110:16 112:5	33:7 36:3 39:11	204:17 205:12,13	412:8 415:13,14
168:3 173:19	113:10 116:3	42:7 43:9 45:6,7	205:15 207:13,17	415:21
177:11 189:17	118:6 124:14	49:17 54:15 55:16	207:19 209:8	Thirty 188:1
197:9 274:21	136:15 145:6,19	64:17 65:10 70:6	210:19 212:2,22	Thirty-six 395:17
294:22 299:2	155:14 156:7,14	71:9 75:17 78:5,7	213:2,6 214:6	thorium 10:2
321:7 325:6	163:14 166:9	83:22 84:8,11,12	220:15,16 224:8	267:17,18 271:1
344:15 363:6,7	167:16 172:5,22	84:15,18 87:19	225:1,20 228:1	272:18,22 279:22
368:6 373:10	173:20 180:12	88:12,14 92:11,15	236:6 240:1,22	349:17 358:4
404:13	181:16 182:20	92:16 96:8 99:18	243:15 254:16	359:1 361:22
test 32:11,13,17,20	187:16 189:21,21	102:5,11 106:1	259:12,18,19	362:1 364:17
53:16 61:16	194:5 200:16	107:2,3,22 109:6	267:7 270:4,10	366:4,5,16,17
132:19,20 162:9	201:18 204:12	109:19 110:8	274:7,9 275:12,15	367:3 369:20
188:21,22 414:11	208:5 212:6	111:19 112:17,17	275:17 278:19	371:15,16,17,22
testing 32:8	231:21 238:10	112:22 113:7,8,13	279:9 280:2	376:14 377:2,12
tests 43:15	250:11 254:12,17	116:11 121:9	292:14 295:18	378:7 379:3,5,10
tetrafluoride	257:16 271:3	124:2,3,13,21	296:2,6,12 297:6	381:3,16 385:4,7
370:18	286:11 294:18	126:22 127:2	297:9 298:22	385:20 390:18
text 78:20 219:4	299:11 303:6	128:2 129:5,6,12	299:11 301:16	392:3,7 408:10,13
384:14	304:9 306:2	133:5,11,17,21,22	302:14,15 305:8	408:14 409:10,19
thank 5:10 6:18	310:11,15 311:15	134:4,5,6,11	322:20 325:17,19	413:5 419:1

420:14	Till 308:11,13	393:19 397:18	320:16 328:2	382:5,7,12 403:11
Thorium-232	313:20 314:12,15	401:11 408:5	335:9 336:10	405:4,21 406:20
306:3,7 377:7	316:4 324:14	409:14 419:9	339:22 342:5,16	406:22 407:13,15
thoron 349:17	325:16 328:8	timeframe 86:22	342:18 353:11	409:5 410:4
thought 18:14	time 9:5,17,17 13:1	timeliness 259:2	354:11 372:20	415:20 416:2
39:11 45:13 81:13	16:22 21:16 24:19	timely 117:11	topic 117:19 119:5	418:16
108:7 119:20	38:22 47:4 50:1,4	times 66:9 73:7	136:10 197:20	transcribing
135:7 140:22	56:14,21 57:6,14	81:19 103:13	214:6 237:19	382:15
153:1,4 163:17,18	62:17 63:4 70:8,9	133:1 210:10	total 37:19 91:9	transcript 41:14
171:19,21 218:22	75:20 79:18 80:1	212:6 250:10	164:14 199:2	44:15 45:4
236:6 247:2 264:6	81:6 82:14 85:2	253:3 256:2 269:4	201:6 203:19	transcription
307:19 326:15	85:13 99:7 100:12	292:9 318:14	206:21 207:1	137:17 381:21
331:3 376:14	100:17 101:1	363:16 379:17	219:14 290:2	412:11
409:17 418:15	102:15 103:10,16	tip 109:1	330:19 364:4	transcripts 14:22
thousand 34:1	116:14 123:22	tired 421:5	378:9 391:5	102:14
240:5 318:7	124:6 136:1 138:7	Titan 248:15	411:18	transfer 42:20
320:14 329:6	139:6,11 146:4	286:19 288:3	touch 154:5	344:14
thousands 27:21	153:4 155:5	384:5	tower 244:12	transformations
233:5 240:16	172:21 176:16	title 16:5 47:10	245:20 246:8	391:3
thread 362:12	190:19 192:8,21	76:21 95:1 127:11	247:1 250:19	transport 325:1,2
three 13:8 19:17,18	199:11 201:8,10	149:2 150:18,22	263:21 291:1	336:19 344:8
20:5 23:4,8,16,20	209:4 211:18	151:2 201:2	toxic 345:8	347:9
34:14 35:9 52:22	215:18 220:5	229:22 230:5	trace 215:14	transuranics 293:5
54:21 57:4 79:22	223:2 225:13	235:7,20,21 309:3	254:11 256:10	294:21
81:18 164:4	229:20 230:19	314:10 395:10	275:10 280:22	tranuranics 302:1
186:20 228:2	233:5 241:14,22	396:16,17	285:16	trapped 342:12
230:11 233:17	242:1 243:3,7	titled 215:2	traces 276:11	treated 269:8
235:14 238:13	247:8 255:1	titles 76:22 77:3,3	track 15:10 58:7	treatment 309:22
256:14,14,17,20	261:19 263:5,10	84:21 97:11,13	176:16 349:14	310:2 314:18
257:2,9 294:20	277:12 280:20	127:15 202:17	420:10	315:11 317:22
309:2 318:17	282:8,22 285:14	TLDs 186:8,10	trackable 95:19	328:4,10
338:19 340:7	285:15 289:12	today 3:12 9:15,21	tracking 88:22	tremendously
350:13 366:6	294:9,15,17	15:3 99:21 100:4	176:13 420:1	127:12
373:14 381:1,11	305:20 309:12	220:16 273:6	track-etch 348:19	trend 80:7 156:17
390:13 397:2	312:10 314:8	305:12 401:3	tract 357:12,15	trends 156:1
401:19 405:2	318:6 321:5 322:2	413:12 421:3	tractable 122:12,13	181:22 203:18
406:7 408:10,11	323:14,20 324:6,7	toilet 143:21	training 130:5	tried 108:16 293:16
410:6,6,15 411:18	326:15 329:17,18	told 33:7 87:6	transactions	358:9
412:6 413:6 415:7	335:18 336:4	tomorrow 141:16	227:13 228:11	tries 62:22
415:19	338:2 354:21	ton 233:6	257:6,13	trillion 246:1 254:1
three-year 224:5	357:19,20 358:4,5	tons 223:17 227:3	transcends 328:6	trip 346:16
threshold 71:3,4,7	363:14 364:2,3,5	228:3,9 378:10	transcribe 403:20	trips 149:17
throw 33:1 109:11	364:16 369:2,10	top 138:17 227:21	transcribed 46:11	trivial 163:5 174:7
thrown 272:15	369:16 374:20	256:16 310:6	46:17 137:6	174:7
TIB 108:15	376:22 377:22	311:2 314:10	164:19 361:2	trouble 217:11
tie 84:21	378:7,8,15 379:1	315:9,19 316:7	373:4 376:2,8,9	true 33:6 43:8
tight 280:3	383:1 391:12	318:8 319:21	381:4,9,14,15,17	62:11 84:8 114:11

Neal R. Gross \& Co., Inc.
(202) 234-4433

```
252:7 256:12
262:1,19 263:2
264:21 289:7
290:21 292:10,19
295:4 342:10
```

trust 132:15 197:19 344:13 346:10 347:14,15
truth 292:18 353:21
try 84:21 110:10 181:20 189:13 300:22 327:22 346:18 358:11 368:22 372:17 387:22 398:20 414:8,9
trying 39:11 49:7 56:2 73:14,16 83:18 103:8 116:15 117:7 123:15 128:17 131:18 136:2 137:18 141:18 171:21 176:7 177:14 187:21 189:12 218:13 233:13 235:1 236:5 239:22 260:1 262:14 289:19 308:4 325:18 338:16 353:8 392:11 394:22 402:20
tumor 39:4
turn 119:3 200:7 304:11 306:15 309:2 316:1 343:9 343:10 357:20 366:10
turned 82:5 135:17 160:15
turns 29:18 35:8 65:21 66:7 76:19 76:21 78:3 81:11 81:13,20 169:11 245:12 247:22

380:21 390:20 \quad 94:2,10 125:2 267:9 363:8 365:10 368:5,7 372:15 375:19 376:18 390:2
typical 284:18 typically 110:20

182:4 207:21 282:18 365:2,12 367:7
typo 323:5
\mathbf{U}

U 164:14 278:9
ultimate 361:10 Ultimately 173:20
uncertain 105:8 uncertainties 224:19 384:17 uncertainty 197:6 287:17 401:9
uncomfortable 191:6 unconservative 323:16

underestimate

17:20 18:1 30:6 31:4 54:20 82:8 82:18 85:14
underestimated 324:16 326:9 underestimates 85:6
underestimating 33:19
underneath 345:17
underpinning 17:7
understand 48:4 49:15 55:11,13,17
55:17 69:7 111:4 115:20 133:14 137:7,8 181:11 235:7 236:5 253:2 272:19 280:12 287:14,21 310:16 338:16 339:13 351:4 353:8

356:14 372:18 387:3,18 414:20
understanding 19:5 215:22 221:20 250:7 understands 83:22 280:14
understood 74:16 160:8 253:6 355:18
undertaking 360:3 under-educated 116:7
Undoubtedly 299:7 unfortunately 161:21 uniform 98:1 264:1 370:7 uniformity 72:18 330:7
uniformly 295:14 unique 34:15 58:1 unit 295:1
UNITED 1:1
units 164:14
unity 322:17
universally $231: 5$ 283:16
University 329:14 unmonitored 30:4 186:22 187:3
unusual 283:10 un-sampled 107:10 UO3 229:9 234:2 237:7,16 261:8,9 261:11 278:15 279:2
update $352: 13$
updated 418:20
updating $350: 14,15$
upper 28:15 52:20
63:2 64:21 321:19
uranalysis $133: 1$ 267:11,12
uranium 10:1
14:15 17:4 19:11 19:21 20:6,11

21:3,6,14 22:3,5
22:10,13,16 24:14
30:17 39:5 50:10
62:6 65:4 71:21
99:22 100:18,21
102:21 103:20
117:16 118:7
124:5 136:9 149:9
150:5 152:21
165:11,19,19,22
197:11,15 215:4
215:11,12 216:3,4
219:15 223:3,12
223:14,16,18
224:16 225:5,14
225:16 226:9
227:22 228:1,1,7
228:9,13,18,20
229:2,3,4,7,15
230:1,1,2,12,14
230:19 231:2,6,9
231:15,20 232:5,8
232:9,13,14,21
233:2,4,7,8,16
234:4,4,9,11
235:6,12 236:3,8
236:17 237:4,8,10
237:20,21 240:10
241:4,11 244:11
244:14 245:17,17
246:13 247:13,22
248:1,3,8 254:21
256:9,15,21
257:12,17 258:13
259:5,8 261:1
265:4 267:11
268:2,8,17 271:1
271:11 272:3,11
272:17 274:19,22
275:6 276:5,8,16
277:9,11,14,20
278:4,5,8 279:15
281:11 288:21
289:4 290:5 292:6
292:8 296:16
297:4 300:20,21
301:21 303:7

Neal R. Gross \& Co., Inc.
(202) 234-4433

304:9 322:8,14,19	usually 197:5 201:3	variety 38:19	162:10 188:17	220:5,8 247:11
349:16 366:3,16	211:15 262:17	various 16:14	378:14	252:20,22 291:9
370:4 371:15,21	318:10 379:3,15	42:21 222:12	virtually 52:12	297:10 299:12,13
372:1 377:3,12	US6 245:17,17	249:17 280:22	virtue 340:16	300:8 304:13
379:9,11 408:13	U-plant 261:7	281:14 329:8	visited 86:16	305:11 309:8,21
Uranium-234	275:2 276:15	359:22 361:6	visitors 11:6	333:17 338:8
377:8	277:15 278:4,17	371:1 372:21	vivo 419:1,20	339:8 348:11
uranyl 261:9		378:13	voice 385:18 398:9	351:20 352:11
urinalysis 149:19	V	vast 30:14	volatile 245:18	353:1 382:17
151:15 152:21	vacuum 333:10	vent 310:4 315:11	volume 320:13	395:1 414:20,22
156:10 164:13	valid 126:7 296:13	343:9,11,12	volumes 328:13	415:4,5 419:15
165:17	validate 337:17	345:14,22	vote 160:22 297:8	420:9,14
urinanalysis 207:6	validated 229:16	vented 310:8 320:3	vow $88: 1$	wanted 19:10 51:1
271:22	validating 43:13	321:10,13 331:6	vu 39:16 393:9	52:10 74:17
urine 24:15 26:1	391:16	339:1 340:3		116:19 119:2
64:13 66:1,6,8	validation 43:14	347:21	W	131:17 153:12
100:4 103:19	136:19 138:15	ventilated 324:5	W 322:6	163:19 220:12,20
133:20 134:5	288:10,17	ventilation 314:1	wafting 349:20	279:18,20 304:5
136:10 149:19	validity 39:14	320:8 323:17	wait 54:22 125:13	313:16 355:18
197:7,16 215:12	41:17 74:12	328:12,13 341:11	220:9	wasn't 24:19 69:18
use $9: 2,3$ 16:6	117:20 132:4,9	345:11,12 346:3	wake 372:12	71:7 81:21 82:1
17:10 30:12 37:6	174:17,17	355:10,15	walk 18:19 54:13	104:12 109:15,16
38:17 55:1 66:18	Valley 224:15	venting 319:20	86:19	161:11 164:1,3
79:10 82:7 85:12	262:11	328:10 353:18	walked 86:17	166:10 229:20
93:12,13,15 99:20	valuable 381:2	Venturi 333:3,9	want 10:5 16:19,20	262:3 301:17,18
100:9 104:2,15	value 26:3 28:16	336:3 345:21	16:21,21 19:14	304:10 323:7
106:13 122:9	36:7 68:17 104:14	veracity 402:21	29:9,9 42:9 53:16	372:11 380:18
130:16 138:5	104:14 292:21	verbatim 316:2	55:18,18 57:14	waste 123:22
179:12 186:21	293:14 308:1	verification 149:11	60:20 62:12 74:22	228:13 262:21
193:6 202:8	311:6,10,10 312:3	verified 229:16	76:16 84:2 91:22	314:1 321:11,12
214:14 260:5	364:1	verify 175:10	93:22 110:12	331:13,18 332:5
267:11 271:16	values 28:15 68:9,9	377:10	111:6 113:11	332:11,12 335:7
280:20 287:15,22	68:16,19 69:22	versatile 337:1	115:15 116:3,16	337:4,4
288:16 292:21	180:20 197:3,5,17	version 145:11	117:9,18 123:19	watching 353:3
325:16 328:4	197:20 242:2	164:10 336:18	123:21 126:2,5,9	way 14:20 19:4,4
345:7 349:21	247:17 269:7	358:16 359:20	126:15 129:5	24:6 29:10 32:8
357:3 358:17	281:13 308:9	387:5	130:8 135:15	36:17 44:20,21
377:6 383:13	311:20 313:17,18	versions 11:19	138:6 141:9,11	49:13 57:16 63:11
386:16	317:2 340:11	versus 37:18 58:12	145:3,6,10 153:3	72:3 78:16 92:17
useful 57:19 75:13	348:3 351:18	65:6 126:1 250:2	160:6 162:2,5	95:12 96:9 99:20
130:1 140:13	372:19 373:2,4	259:14,14 270:7	181:21,22 185:15	103:4 108:15
200:14 208:9	377:15 385:5	311:10,17 338:18	187:17 190:20	114:17 123:11
299:9 371:5	400:10	384:18 389:11,19	192:14 196:20	133:7 135:10,11
391:15 397:13	variability 23:9	vetted 59:6	198:5,6 201:19	138:9 152:10
399:8 403:3	264:3 400:3	vicinity 124:4	202:21,22 204:9	171:22 172:19
usefulness 186:2	variation 243:20	view 49:22 72:4	204:12,13,15	173:15 174:22
uses 75:9 336:17	varied 319:10	108:1 141:2	205:17 208:6,10	177:12,15 179:1

Neal R. Gross \& Co., Inc.
(202) 234-4433

182:6 188:8	8:13 9:15	65:20,22 66:4	354:2,3,19 355:20	234:13 239:17
193:15 200:22	well-founded 243:1	69:15 71:1,2 72:1	361:19 365:22	247:12 264:18
207:19 211:5,8	went $8: 11$ 38:4,8	72:2,14 77:22	366:8 372:9	286:7,18,21
213:20 222:15	40:7 41:3 44:14	79:17 80:3,22	377:20 381:20	288:12 296:4
224:7 231:10,15	45:4 46:5 55:11	83:3 91:16 96:19	384:1 402:20	299:19 302:19,21
238:14 240:15	55:12 89:13 95:7	101:17,18 103:8,8	405:2 410:10	303:3 304:7,19
245:3 250:7	95:13,15 114:7	111:5 112:5	413:17 418:16	305:22 306:21
260:22 287:8	118:14 126:20	115:17 116:14	420:15,15 421:5	338:22 339:3
292:8 297:3	152:13 159:7	117:9,18 118:10	we've 9:17 10:4	358:16 359:20
305:17 325:6,18	184:17 188:21	119:17 120:14	28:17 31:11 33:22	367:1 373:1
329:15 330:6	199:15 212:10,13	121:12 123:7,15	37:16,18 38:13	385:22 387:6
334:6 339:9	223:21 230:20	125:22 128:21,22	40:4 61:4,11	388:6,22 396:21
346:16 347:12	234:2 270:7 277:5	130:10 131:3	79:18 91:10,11,16	396:22 397:2
348:2 353:7 363:3	290:19 303:19	138:16 140:15,19	91:18 97:13	400:6,8 401:1
369:18 377:6	307:3 327:8	142:16 146:3	114:22 115:1,2,5	402:18 403:6,21
378:3,16,22	329:15 335:12	147:17 148:15	115:6,7,11 118:5	412:3 413:11
418:17	355:11 390:22	154:6 163:15	123:1 126:18	414:5,8 415:3
ways 70:2 98:11	391:11,21 403:17	164:7 168:7 171:8	135:16 141:4,5	418:12,17 419:19
138:14 279:14	weren't 58:20	177:12 178:9	154:11 157:6,9	420:17
341:13	156:11	179:15 181:19	161:7,21 162:8	Whitetail 244:16
weak 27:7 34:19	West 224:15	183:8 189:17	164:21,22 175:2,8	Whoa 27:15
weakness 61:20	262:11	192:12 193:20,21	177:18,20 180:14	wide 243:20 297:19
weaknesses 54:3	we'll 11:5 15:20	194:6 195:8,10	183:5 184:16	wind 336:3 348:5
wealth 260:18	22:19 54:7 104:5	198:8,14 199:7,9	185:8 186:22	window 99:4
371:10	104:9,10 109:6	212:16 214:21	187:13 188:11	139:11
weapons 265:6	118:12 140:14	221:21 234:5	191:2,5 196:1	windows 99:6
wearing 247:5	147:21 148:9	235:1,3 247:9	198:9 220:3	wish 47:3 108:7
web 144:17	154:2,20,20	249:14,22 250:3	233:12 266:9	witness 6:8
WEDNESDAY	198:12 200:7,13	251:4,13 255:20	268:9 271:13	women 186:19
1:13	238:5,7 302:19	256:22 259:13	272:6,8,15 279:8	wonder 179:5
weeds 353:1	303:15 317:13	260:5,8 262:7	279:9,12 280:2	394:8
week 11:20 47:9	334:21 356:9	265:15,16 268:5	286:12 289:18	wondered 379:19
142:10 143:1	376:3,11 383:14	268:15 269:22	290:7 293:20	wonderful 116:10
390:16	387:13,14 388:10	271:4 273:5,7,11	294:5 296:7 297:9	wondering 8:8
weekly 207:4	404:20 419:9	279:13 280:17	304:12,14 349:12	383:9
weeks 305:14,15	we're 3:9,13 9:15	281:8 283:5,6,11	351:3 355:22	Word 412:5
366:6	9:21 10:1 11:10	283:12 288:21	356:5,9 357:15	words 13:20 25:3
weigh 172:4 263:4	14:12 22:2,15,18	289:10,19,22	379:2 386:17	47:16 69:16 72:11
weighs 229:10	25:17,19 26:16	290:7,16 295:19	387:7 391:7 410:3	78:8,10 82:4
weight 363:2	30:6,10,19 31:21	295:20 299:3	412:10 414:4	95:13 100:8
392:20 395:13,16	32:12,14,19 34:13	300:4 302:20	416:12 417:18	112:15 122:10
396:14 397:4	34:16 35:6 36:16	303:16 304:2	420:5	139:8 147:1
weighted 306:4	40:18,22 42:1	305:1 311:13	whatsoever 365:21	155:18 157:15,18
358:17 364:6	44:2,17,18 45:8	331:20 337:16	what-if 273:10	177:7 202:12
397:16	53:18 54:6,11,15	344:1,10 346:15	white 102:8 115:9	203:14 206:11
welcome 3:4 5:10	55:14 57:22 60:17	348:3 351:22	136:6 215:5 220:1	268:16 269:2
6:17 7:10,20 8:1,7	61:5 63:4 65:12	353:5,6,12 354:1	225:1,22 226:6,12	281:14 289:9

315:8 325:15	209:20 210:2	354:22 368:9	wrote 269:2 304:19	39:3,4 50:4 56:7
327:4 407:4 414:2	271:12 290:9	385:20 386:3,21	X	58:16 60:16 66:14
work 3:22 4:1,4,6	304:1 387:10,16	worker's 22:7	X	68:7 75:14 76:5
9:16 11:22 14:10	394:8	183:17 394:9	X 99:21 255:21	77:12 80:12,14
21:18 28:4,22	workers 3:6 16:7	workgroup 1:10,15	407:11	86:21 105:2,9
29:6,12 33:15	16:15,16 17:5,10	44:13 304:2	x-rays 271:2	107:14 112:6
35:13 55:10 69:19	17:21 18:2,8,11	working 3:4,20	Y	115:18 125:6,15
78:2 82:20 83:14	21:13 27:21 28:8	30:11 36:20 42:8	Y	127:13 132:12,13
83:19 84:3 85:19	28:22 29:3,19	46:3,21,22 47:2	year 9:19 11:6	145:20 146:12
103:4 106:16	30:4,11 31:3 33:5	52:13 56:15 60:3	4,20	156:12 161:22
107:14 114:13,17	33:17 34:14 35:2	74:6,15,16 81:17	28:1,4,10,22 29:4	184:3 186:11
116:11 123:16	35:7,8,9,17 36:10	98:12,13 99:17	29:15 47:10 48:5	187:8 191:14
124:15 133:10	36:12,17,17 37:11	118:18 130:18	48:13 49:11,19	202:16 203:20
143:13 147:14,19	37:14 44:4,9	158:10 160:4,6	50:15,19 51:7,7	204:21 205:18
147:20 148:10	45:12 47:3,8 48:3	175:4 199:21	51:18,21 52:8	208:8,12,12
162:16 166:11	48:21,22 49:10	205:8 207:20	56:9,9 57:11,12	209:21 257:2
173:1 174:5 180:9	50:1,2,7,13 56:8	221:9,12 241:13	66:6 67:1 70:19	262:17 263:18
196:15,16 205:14	57:1,3,4,9 58:12	243:7 273:7 296:1	75:3 76:6,11	266:5 286:11,15
213:7 215:6	58:12,15,18,19,20	349:4 359:6 419:4	83:11 87:13 98:6	328:15 331:12,16
242:12 270:15	59:2 62:1,5,11,15	works 70:5	98:8,13 99:5	331:20,21 356:5
273:9 283:13	63:13 64:1 65:4	worksheet 396:12	105:6 111:2	359:22 360:8,10
291:20 304:22	66:3,5,7,9 70:11	worksheets 408:11	132:18 134:17	361:6,13,22 366:9
305:4,19,21 306:9	71:20 73:8 74:6	worried 252:13	139:9 157:15	372:20 375:5
308:2 310:6	77:21 79:21 80:8	worst 272:15	158:6 190:12	381:15 401:22
352:18 388:12	80:14,17 82:13	worth 32:22 82:21	203:13,14 205:1,3	404:10,12,22
389:3 406:12	83:8 86:9,12	107:22 136:2	:206:10	405:1 419:1
412:20,21 414:20	87:11 88:1 92:15	378:5,19 399:2	207:3,3,3,6	yellow 352:17
worked 20:8,16	98:3,11 99:2	worthwhile 376:15	208:18,21 209:9	yield 380:3
21:14 59:8,10	101:22 107:13	wouldn't 18:21	209:18 228:5,8	young 174:2
62:16 63:14 75:2	120:11,22 121:3	55:1 69:11 82:10	230:19 233:18	
82:14 83:10 85:9	124:5 125:19	87:16 93:12 96:4	265:3 266:10,17	Z
86:21 87:13 95:15	132:13 157:14	96:5,7 97:9	294:11 305:3	zero 34:3 37:9,9
111:22 112:9	158:5 162:19	110:22 127:6,7	307:18,22 308:7	84:20 104:9
114:1 126:4 128:3	167:10,11 169:16	152:22 184:15	309:22 313:9	211:16,19 215:18
130:4 156:8 163:1	170:18,21 171:13	258:5 341:12	324:4,6 326:4	321:20 331:19
184:3 191:14	172:8,21 175:9	wrapped 118:1	329:6 338:22	zeroes 201:14
201:5 202:16	185:2,5 188:19	wrestle 289:19	359:6,10 360:16	Ziemer 1:21 4:1,1
worker 7:18,22	189:3 210:8,12	writing 401:3	366:3,7,17 367:6	11:15 12:10,13
19:9,14,20 20:8	212:13 215:3	written 154:16	367:6 371:18	23:15 47:21 48:2
20:15,17 36:1,19	246:12,14,19	215:20 221:5	378:10,17 379:17	48:7,9,12,16,19
37:10 40:10 48:9	247:5 268:18	wrong 55:6 98:17	385:7 391:5,7	49:6,9,14 52:12
51:7,18,20 63:19	273:18 285:18	125:13 126:22	392:21 396:6	67:9,12,20 92:3
81:20 118:17	287:19 290:4,11	138:9 140:4,4,5	402:1,4 406:5	98:5 107:1,21
124:7 178:16	291:13 294:4	166:19 190:3		108:4,9 114:6
182:21,22 184:2	302:8,13 310:6	231:6,11 250:15	yearly 156:10	119:20 120:5
189:8 192:19	315:9 329:16	305:9 344:12	378:17	122:2 136:16
199:20 201:8,10	350:1,12 351:17	353:16	$\begin{array}{\|r\|} \hline \text { years 18:8 20:16 } \\ \text { 29:4 30:10 37:2,3 } \end{array}$	137:7,18 138:1

Neal R. Gross \& Co., Inc.
(202) 234-4433

140:7,12,19	zone 306:4 310:21	326:10	120 167:18	359:2 368:19
141:13,20 142:1,6	363:8 364:13	10th 149:2 150:20	123,000 311:17	373:13
142:15,18,22	365:8 373:11,16	10,040 125:19	13 66:3,5 167:9	1955 227:20 228:5
143:6,14,18 144:4	373:18,21 375:7	10-A 250:12,19	322:21	360:6 361:18
144:19 145:3,7	375:11,16 384:8	251:12	133 77:11,18	367:2 369:17
147:17,20 148:1,6	384:18 389:11	10-minute 302:16	14 200:10,10,12	371:18 372:2
148:14 150:16	391:9,13 395:4	303:12	202:6 205:21	406:5 407:5 410:2
158:7,17,20 159:3	zones 310:21	10-year 209:20	287:3	410:8 411:16
159:6,12 160:1,7	389:19	10:13 40:7	14th 200:22	412:8 415:16
160:11 168:16,21	Zurich 1:15	10:14 40:8	15 97:8 183:12	416:12,17 417:14
172:11,17 174:8		100 59:12 72:18	196:1,4 207:1	417:17,19,22
174:12 175:7,11	0	75:15 76:13 97:8	210:22 211:2,4,6	1956 73:5 75:4
175:20 176:6,21	$0.2300: 2$	101:15 102:2	211:7,9 214:2	157:13 417:1
177:3,7,9,19,22	$0.38312: 4$	137:10 138:16	313:14 330:17	1957 35:1 36:2,8,16
178:2 184:5,9	0.72 312:4	139:17,19 140:16	150 66:20 71:4	98:3 227:13
191:7,12,18,22	03 230:19	142:18 152:12	166:22 167:9	1958 313:8
192:2,7 196:3	03-24-2009 410:21	241:9 242:22	168:5 170:8	1960 360:7 361:20
200:18 204:17	04-16 411:3,12	243:4 244:1	171:21 187:18	405:11 407:19
205:5,11,17	04-16-2000 410:22	247:17 250:16	188:13 191:6,9	415:15 417:4
207:13,20 208:2	06 377:19	251:9,22 259:13	194:3 195:9	1961 113:14 226:8
211:21 213:19	07 9:18	268:14 270:7	152 360:20	228:17 229:15
214:2 216:13,19	1	272:21 273:19	16 38:10 56:21 89:9	231:10,20 234:14
217:4,8,11,15,20	$\frac{1}{124: 963: 3,1465: 5}$	274:1 279:10	91:19 284:10	268:19 380:22
218:4,6,12,17	1 24:9 63:3,14 65	280:11 287:1	323:3,6 363:12	1964 244:10 316:8
219:8,13,16	75:4 98:12,13	288:22 289:20	373:14,17,22	316:19
234:19,20,22	227:20 319:3	290:12 291:19	16th 399:21 402:8	1966 360:6 361:18
235:11,15,19	1A 249:17	318:15 321:20	160 360:12,12	406:5 407:7
236:4,12,16,19	1B 249:17	331:10 365:15	167 360:14	415:16 417:7,10
237:2,6,22 238:20	1,000 97:8 140:1	375:11 382:10	168 317:19	1968 358:20 359:2
239:2,5,9,13,21	162:3 328:11	100,000 142:19	17 57:13	1969 375:3
240:3,6,9,13,18	1,040 37:18 91:8,9	324:4,17 338:18	171 381:8	1970 36:21 42:6,8
294:14,22 295:4	1,500 416:10	100-millirem 59:3	18 57:20	42:14 145:22
296:6,10 301:1,10	1-A 250:10 251:12	11 118:11 216:5,6	181 63:22 64:20	156:7
302:18 312:11,15	1-1 19:7	216:21 217:5	66:2 67:9,11,12	1972 316:20
330:14,15 331:2	1-3 20:5	219:6 221:3,17	19 369:5,8	1977 327:2
337:22 338:5,9,15	$1.2328: 13$	241:1 320:20	193 317:20 319:6	1979 309:14 316:14
339:7,12,17	1.566:18 71:4	350:17 374:10,15	194,000 311:10	320:22 321:1
342:20 346:21	1.6 23:19	398:6 405:5	1950 105:4 179:11	323:22,22 324:7
347:18 348:5,21	1.866:9	11/13 9:18	1950s 274:18	332:14 342:6
349:5,10 353:20	1.81 67:10,19	11:20 118:14	1951 60:16 277:13	343:14
374:10,15 395:2	1/1/52 20:8	11:30 118:12	1952 34:16,17	1980 58:5 60:5
395:17 396:18	1:50 199:16	11:38 118:15	50:12 56:7 203:15	284:7
407:1 412:19	10 204:21 209:21	110 77:19	275:3	1980s 285:8 342:22
413:1 418:11	211:17,20 212:13	119 369:21	1953 63:3,14 65:5	1985 58:11 223:22
zinc 364:19 370:21	217:9,16 219:4	12 381:18,18 405:5	65:22 313:8	266:15
zirconium 218:19	241:1 268:8,11	12/31/53 20:9	373:14 416:20	1987 310:1 314:17
219:2,5,6	$\begin{aligned} & \text { 289:15 290:8 } \\ & \text { 298:5 316:1 319:3 } \end{aligned}$	12:43 199:16	1954 209:1 227:20	317:18 319:5,9

Neal R. Gross \& Co., Inc.
(202) 234-4433

1989 59:2 60:16	230:16 237:11	3	4.3-6 362:14	399:22 402:9
127:1 179:10	239:7 240:3 257:3	33	40 172:8 207:12	52 24:18 34:19 36:5
1990 126:4 128:14	257:19,21 260:8	79:5,8 112:9	211:17 272:6,7	36:10,20 201:5
129:22 186:6	260:14 263:15	166:20	331:9,11,13,20,20	208:15,17 209:8
1991 310:9,18	264:19 265:12	3,000 35:7 392:2	40.4 91:14	212:9
323:12 331:11,20	2006 25:12,13	3,118 284:9	400 321:8 353:14	525,000 311:11
1993 312:1	115:17 208:8	3,500 281:8	374:7	53 24:18 34:16,20
1995 308:10,13,16	2007 126:4 131:15	3-3 217:20,21	400,000 33:22 34:6	48:20 50:12 56:7
309:7 313:10,19	146:7	218:21	124:4	68:6 203:15
314:12 324:14	2008 126:5 149:2	3-7 218:4 235:4	406,145 164:13	226:10 233:5
1999 266:17	150:20 219:5	3.44 20:13	4076 152:21	278:1 303:6
	255:22 256:8,8	3/10/2008 151:8	412.77 300:2	54 24:20 63:15
2	304:21 306:22	3:35 303:19	431,016 164:12	203:16 208:15,17
$224: 8$ 63:15 73:6	307:2 358:6 359:6	3:50 303:20	435,982 164:12	209:12,14 226:10
75:9 111:22 112:1	384:12	$30158: 4188: 2$	463 365:15	228:8 369:3,13
112:5,7,8 164:10	2009 1:13 16:4	191:8,11 193:18	47 277:12	416:6 418:5
190:13	215:1 216:12	194:2 203:20	$49.95143: 1$	54(a)(11) 59:19
2,400 34:21	305:5 362:6 367:1	204:1 207:11,17		54(a)(35) 59:19
2,735 228:9	411:20	211:17 212:21	5	55 63:15 319:7
2-1 27:13 68:14	208 317:20	227:20 239:9	5 75:5 98:17 247:12	369:19 379:13
2.0 336:18	209,000 311:17	286:11 316:21	5th 239:12	405:9,10,20 406:6
2.4 98:3	21 331:15	317:7 341:21	5,000 307:17 308:7	407:9,16 415:8
$2.573: 6$	22 1:13	342:3 363:10,21	313:8 324:13	417:15
2/1961 113:19	221 319:11	367:8	$5.1250: 10$	55-gallon 229:10
20 71:8 118:11	226 311:9 323:5	30,000 338:18	5.2.4 312:19	55-minute 394:2
145:13 157:13	331:1	$300 \text { 162:5 166:22 }$	5:45 421:8	56 36:5,11 63:15
158:4 162:13	229 51:8,19, 21	167:6 257:14	50 33:13 34:3 38:7	212:9 371:20
170:7 184:1	23 61:7,12,14,19,19	300-A 257:7	38:11 44:3 58:13	372:1 416:6
202:16 211:17	62:21 64:19	31 61:14	65:20 89:8,11,21	560 377:13
213:21 304:16	193:16 249:10,20	32 66:1,6 381:7	89:21 91:15,17	57 36:12,22 103:19
313:14 363:10,20	23rd 216:17	33 149:21 153:7,10	92:1 105:2,9	103:19 261:22
20-something	230 319:12	$35 \text { 188:22 189:2 }$	110:4 111:21	371:20,22
180:21	232 279:22	343:13	123:3 124:16	571 91:17 92:1
200 172:21 173:1	24 411:19	$35.5 \text { 319:6 }$	125:1,11,11 172:8	58 34:20 103:21
259:14 342:11	240 170:4	$37 \text { 284:9 311:12,12 }$	191:11 211:17	227:3 261:22
2000 105:6 223:22	25 57:9 75:20 76:19	38 311:17 331:9	259:14 267:14,19	59 48:20,22 407:20
227:6 229:21	77:2 145:14 150:7		267:21,22 270:21	
239:10 258:5,9,11	304:21 307:2	4	272:14 281:10	6
260:6,9,13,17	375:12 384:8	475:5 314:17	50MR 353:11	6 75:5 166:18
265:3,5,9,9,17	25th 115:17	4,000 34:14 35:7,8	50s 50:13 145:21	6th 47:1
266:15,17,18	250 319:11 342:11	35:9 37:14 98:3	146:15 156:9	6,000 307:17 308:7
283:18 285:3,4	353:13	4-3 217:9,16 218:18	50th 25:6 28:14,21	313:8 325:15,17
324:21	258 195:22	4.2-1 350:9	64:8 65:6 75:6,7	338:21
2000A 283:18	26 77:3 121:4	4.2-2 284:5	75:11 85:22 86:3	60 204:1 307:21
2003 224:6,11	266.2 228:3	4.2-3 307:10	86:6,10,11 87:1	321:3 342:4 357:3
226:21 227:1,9,10	27 322:12	4.3-1 362:10	109:4 125:3	407:20
227:12 229:5,13		4.3-10 362:11	130:10,17 399:21	60s 145:22 156:9

Neal R. Gross \& Co., Inc.
(202) 234-4433

Neal R. Gross \& Co., Inc.
(202) 234-4433

