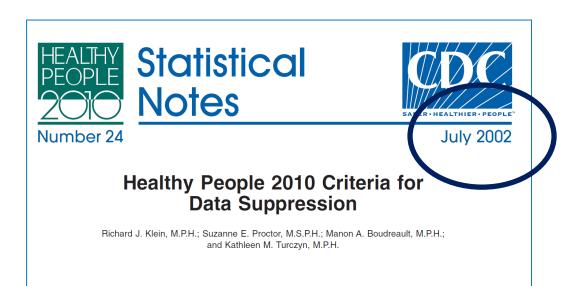


NCHS Data Presentation Standards for Rates: Vital Statistics

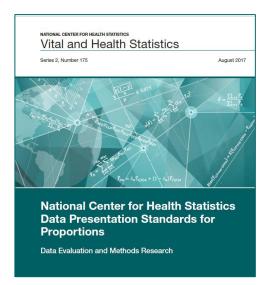

Jennifer D. Parker
Director, Division of Research and Methodology
National Center for Health Statistics

Meeting of the NCHS Board of Scientific Counselors January 9, 2020

NCHS data products

- General health data products with a large set of health outcomes by many population subgroups, often from multiple data sources
 - Interest in many (often predetermined) subgroups, including small groups, multiply crossed categories and geographic areas
 - Some stand-alone estimates, although standard errors/intervals can be available
 - Minimal or no discussion in text
- Topic specific data products: Data Briefs; National Health Statistics Reports; journal articles.
 - Choice of subgroups often determined for specific report
 - Expected precision of estimates can be considered (e.g. coarsening age groups, collapsing race/eth or income groups)
 - Standard errors or confidence intervals can be provided and are discussed in the text.

- Listed criteria for about 20 data sources, including surveys and vital statistics.
 - At the time, most standards based on RSE and sample size.
- Did not make recommendations or compare criteria.


The first NCHS workgroup on data presentation standards

- NCHS workgroup formed in May 2013
- Task
 - Define scope
 - Assess of alternate methods of precision
 - Develop of proposed guidelines
 - Develop of software for implementation across different NCHS data systems
 - Compare former to proposed guidelines across data systems
- Focused on proportions, as most common statistic produced by NCHS

NCHS Data Presentation Standards for Proportions released August 2017

Standard

- Criteria based on minimum sample size and absolute and relative width of exact confidence interval
- Estimated proportions with few degrees of freedom or with suppressed complementary proportions are to be evaluated individually
- Implementation generally, although not always, led to more estimates presented compared to prior criteria

The second NCHS workgroup on data presentation standard: Rates

- Rates are widely disseminated by NCHS, e.g.
 - Vital statistics
 - Death rates
 - Birth rates
 - Health care statistics
 - Visit rates
 - Hospitalization rates

The second NCHS workgroup on data presentation standard: Rates (2)

Workgroup was formed in 2018 and includes representatives from DRM,
 DAE, DVS, DHCS, OCD and a DRM contractor (mathematical statistician)

- Approach
 - Identify current practice for data suppression of rates
 - Define scope
 - Review and examine statistical principles for rates, particularly properties of intervals calculated for rates

What are rates?

- The working definition of a rate is the estimated number of events for a given time period (typically year) divided by a population count for the number at risk during that year (typically a Census mid-year population count) and often multiplied by a constant
- Crude rates and age-specific rates
- Age-adjusted rates: linear combination of age-specific rates standardized to standard US population

Examples of rates

- Diabetes Death Rate for 2017
 - the number of deaths attributed to diabetes in 2017, divided by the
 US resident mid-year population for 2017, multiplied by 100,000
- Outpatient visit rate for preventive care, by region, 2017
 - the number of visits for preventive care divided by the US civilian noninstitutionalized mid-year population by region for 2017, multiplied by 1000

Types of rates

- Rates with 'random' numerators and 'fixed' denominators from vital statistics, including:
 - national and state death rates, birth rates, rates for some subgroups

- Rates with 'random' numerators and 'fixed' denominators from surveys, including:
 - national and some subnational visit rates

Types of rates (2)

- Rates with 'random' numerators and 'random' denominators, including
 - some subnational and subgroup rates from vital statistics where population denominator estimated from American Community Survey
 - condition specific rates where population denominator is estimated from survey, such as the National Health Interview Survey
- Infant mortality rates (unlinked, period linked, cohort linked)

First step

- Rates with 'random' numerators and 'fixed' denominators from vital statistics, including:
 - national and state death rates, birth rates, rates for some subgroups

- Strategy
 - Identify and compare current presentation guidelines,
 methods of interval estimation, relative standard errors

Intervals

- Crude and age-specific rates
 - Approximate intervals calculated using normal approximation (Wald method: mean ±1.96×SE) for rates and counts with 100 or more events
 - Exact intervals calculated using Poisson distribution for rates with fewer than 100 events –
 operationalized using "Gamma method"
- Age-adjusted death rates are more complicated
 - Linear combination of Poisson random variables is not Poisson
 - Approximate intervals calculated using normal approximation for rates and counts with 100 or more events
 - Approximate intervals calculated using Poisson distribution for rates with fewer than 100 events operationalized using "Gamma method" with "DVS" modification

Current presentation guidelines for crude and agespecific vital rates

■ If x < 20 (i.e., $x \le 19$), rate is deemed unreliable and is suppressed

Corresponds to relative standard error of ~23%

Relative width of gamma interval ~ 96%

Proposed change to presentation standard for agespecific and crude rates

FROM: If x < 20 (i.e., $x \le 19$), rate is deemed unreliable and is suppressed

TO: If $x < 10^*$ (i.e., $x \le 9$), rate is deemed unreliable and is suppressed

*Note that x < 10 is the confidentiality cutoff for subnational data

Proposed change to presentation standard for agespecific and crude death rate (2)

Rationale

 x < 10 offers a single cutoff for suppression to ensure both confidentiality of subnational data and reliability

■ Whereas x < 20 is equivalent to RSE \geq 23%, x < 10 is equivalent to RSE \geq 33%

- Relative width (RW) of gamma CI corresponding to x < 10 is RW_{gamma} > 140% (up from RW_{gamma} ≥ 96% for x < 20)
 - \circ This goes in the same direction as the RW criterion for proportions (RW_{exact} > 130%)

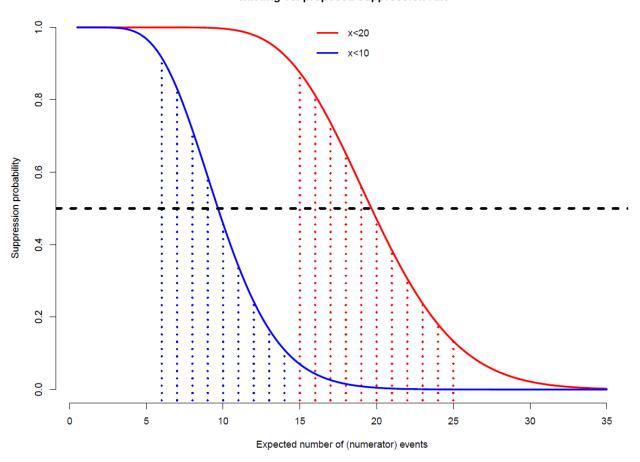
Current presentation guidelines age-adjusted death rates (AADR)

If $\sum x_i < 20$ (i.e., $\sum x_i \le 19$), age-adjusted death rate is deemed unreliable and is suppressed

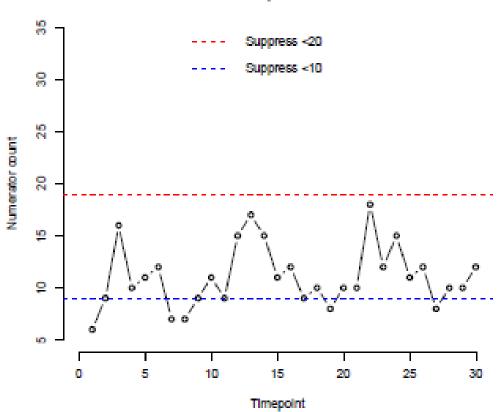
Proposed change to presentation standard for ageadjusted death rate

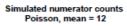
FROM: If $\sum x_i < 20$ (i.e., $\sum x_i \le 19$), AADR is deemed unreliable and is suppressed

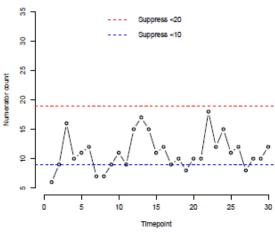
TO: If $\sum x_i < 10$ (i.e., $\sum x_i \le 9$), AADR is deemed unreliable and is suppressed

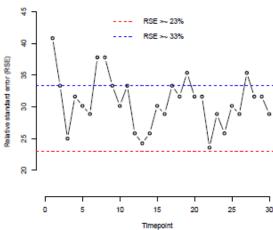

The AADR should continue to be suppressed when the crude rate $\sum x_i / \sum p_i$ needs to be suppressed for reliability or confidentiality reasons

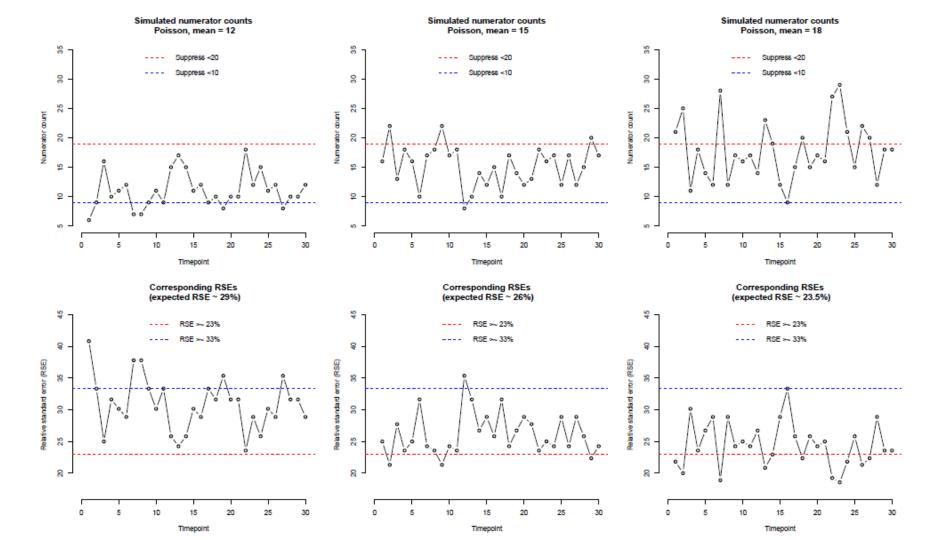
Proposed change to presentation standard for ageadjusted death rate (2)


- Rationale
 - The AADR can be computed and presented even if the age-specific death rates are all suppressed (as is done in CDC WONDER and NCHS publications)
 - These cutoffs are consistent with those for the crude rate, and correspond to $\sum x_i < 10$ and $x_{adi} < 10$
 - In simulations, RW_{DVS gamma} > 140% corresponds to RSE_{AADR} ≥ 33%


^{*} x_{adj} is defined as [100/RSE(y)]²; $y = \sum w_i(x_i/p_i) = AADR$


Probabilities that crude rate would be suppressed: existing vs. proposed suppression rule


Simulated numerator counts Poisson, mean = 12



Corresponding RSEs (expected RSE ~ 29%)

Summary

- Recommendation to lower presentation threshold from 20 events to 10 events for crude, age-specific and age-adjusted rates for vital rates with random numerator and fixed denominator
 - Corresponds to RSE increase from 23% to 33%
 - Relative confidence interval width ~ 140%

Current and future activities

- Health care surveys with 'random' numerator and fixed denominator
 - Differences from vitals
 - Survey design (e.g. degrees of freedom, sample weights, etc)
 - Multiple visits per person

- Future
 - 'Random' denominators

Data Presentation Standards Workgroup

- Division of Research and Methodology
 - Jennifer Parker
 - Katherine Irimata
 - Don Malec
 - Guangyu Zhang
 - Makram Talih (SIS)
- Office of Center Director
 - Amy Branum

- Division of Vital Statistics
 - Brady Hamilton
 - Ken Kochanek
- Division of Health Care Statistics
 - Alex Strashny
- Division of Analysis and Epidemiology
 - Barnali Das

Thanks to DVS

- Division of Vital Statistics
 - Robert Anderson
 - Elizabeth Arias
 - Danielle Ely
 - Isabelle Horan
 - Hanyu Ni

Jennifer Parker jdparker@cdc.gov

