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To control COVID-19, Hong Kong, China, put in 
place several public health and social measures 

(PHSMs), including mandatory mask wearing, school 
closures, hand hygiene, and avoidance of gatherings. 
In early 2020, those measures also reduced influenza 
transmission (1), and according to laboratory surveil-
lance records, influenza virus did not circulate in the 
community for 3 years (2). From mid-2022 through 
2023, PHSMs were progressively relaxed, and on 
March 1, 2023, the local mask mandate was lifted. We 
investigated the effects of PHSMs on influenza trans-
mission in Hong Kong.

We collected weekly influenza-like illness con-
sultation rates reported by private general practi-
tioners and the weekly proportion of sentinel respi-
ratory specimens that tested positive for influenza 
virus in Hong Kong during October 2010–May 2023. 
We established a proxy for influenza virus activity 
by multiplying rates of influenza-like illness by the 
proportion of influenza-positive samples following 
previous studies (3,4) (Appendix, https://wwwnc.
cdc.gov/EID/article/29/12/23-0937-App1.pdf). We 
found that weekly influenza activity had decreased to 
almost zero since March 2020, when PHSMs against 
COVID-19 began (Figure). Before mandatory on-ar-
rival quarantine of travelers started on September 26, 
2022, only sporadic influenza-positive samples were 
detected by surveillance, all from travelers or children 
who had recently received live-attenuated influenza 
vaccine (5). After travel restrictions were removed, 
sporadic influenza detections increased, but overall 

Soon after a mask mandate was relaxed (March 1, 2023), 
the first post–COVID-19 influenza season in Hong Kong 
lasted 12 weeks. After other preventive measures were 
accounted for, mask wearing was associated with an 
estimated 25% reduction in influenza transmission. In-
fluenza resurgence probably resulted from relaxation of 
mask mandates and other measures.
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activity remained low. After mandatory indoor and 
outdoor mask wearing restrictions were lifted on 
March 1, 2023, influenza transmission increased sub-
stantially; the first influenza season after COVID-19 
in Hong Kong started and peaked on April 9, ended 
on May 25, and lasted for 12 weeks (6).

Because various other PHSMs were implemented 
concurrently with the mask mandate, resurgence of 
influenza activity could not be attributed to relaxation 
of the mask mandate alone. Therefore, we used a pre-
vious approach that estimated the time-varying effec-
tive reproductive number (Rt) (7) and a multivariable 
log-linear regression model on Rt that could allow for 
adjustment of other factors affecting influenza trans-
mission, including depletion of susceptible persons, 
seasonal differences, and meteorologic predictors 
and preventive measures (Appendix). Because the 

predominating influenza strain in 2023 was influenza 
A(H1N1)pdm09, we identified previous influenza 
A(H1N1)pdm09 epidemics that had occurred during 
2010–2020. To construct a preventive score, we used 
data from cross-sectional telephone surveys among 
the general adult population in Hong Kong from 
2020 to 2023 as a proxy for the intensity of preven-
tive measures, other than mask wearing, against CO-
VID-19 (1). The preventive score included the average 
proportion of persons who avoided visiting crowded 
places, avoided going to healthcare facilities, avoided 
touching public objects, or used protective measures 
when touching public objects, and washed hands im-
mediately after going out. Before 2020, the propor-
tion of those preventive measures was established 
as baseline. When constructing a preventive score, 
we compared the Akaike information criterion of 4  

Figure. Weekly influenza activity and several preventive measures against COVID-19 in Hong Kong during 2020–2023. The blue line 
represents the weekly influenza activity, measured by the product of influenza-like illness rates and laboratory detections of influenza.

 
Table. Effects of public health and social measures to protect against COVID-19 on Rt for influenza, Hong Kong, 2010–2023* 
Model† PHSM description  % Change in Rt (95% CI) AIC‡ 
Model 1   3.62 
 Mask  −25 (−43 to −1) 
 Preventive score 1  Avoid social gatherings. Wash hands after being outside. 

Avoid touching or use protective measures with shared 
objects.  

−82 (−91 to −63) 

Model 2   9.55 
 Mask  −26 (−44 to −2) 
 Preventive score 2  Avoid going out as much as possible. Wash hands after 

being outside. Avoid touching or use protective measures 
with shared objects. 

−80 (−91 to −55) 

Model 3 (main model)   0 
 Mask  −25 (−43 to −1) 
 Preventive score 3  Avoid going to crowded places. Avoid going to healthcare 

facilities. Avoid touching or use protective measures with 
shared objects. 

−77 (−88 to −60) 

Model 4    
 Mask  −24 (−43 to 0)  
 Preventive score 4 
 

Avoid going to crowded places. Avoid going to healthcare 
facilities. Avoid touching or use protective measures with 

shared objects. Wash hands after being outside. 

−81 (−90 to −62) 2.79 

*AIC, Akaike information criterion; Rt, time-varying effective reproductive number. 
†Models were adjusted for depletion of susceptible persons, between-season effects, and absolute humidity. 
‡AICmodeli = AICmodeli − AICmin,AICmin = min(AICmodeli), i = 1,…,4.  
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combinations of those protective measures. Meteo-
rologic variables provided by the Hong Kong Obser-
vatory (http://hko.gov.hk) were temperature, wind 
speed, and relative and absolute humidity. To quan-
tify the effects of meteorologic variables, we fitted the 
models to data before the COVID-19 pandemic.

Among the 9 epidemics of 2010–2023, the estimat-
ed Rt varied from 0.62 to 1.38 (median 1.02) (Appen-
dix Figure 1). The estimated Rt showed a decreasing 
pattern in each season, ranging from ≈1.2 at the begin-
ning of an epidemic period to 0.8 at the end of an epi-
demic period. After model selection (Appendix), we 
found that a model of absolute humidity, mask wear-
ing, and preventive score 3 (Table) explained 92% 
of the observed variance in estimated Rt (Appendix 
Table 1). Changes in absolute humidity (Appendix 
Figure 2, panel A), the proportion of mask wearing, 
and preventive score 3 (Appendix Figure 2, panel B) 
strongly correlated with changes in Rt. After adjust-
ing for other factors, such as depletion of susceptible 
persons, between-season effects, and absolute humid-
ity, we found that mask wearing was associated with 
a 25% (range 1%–43%) reduction in Rt and that other 
preventive measures (combined) were associated 
with a 77% (range 60%–88%) reduction (Table).

We found that that influenza increased after 
PHSMs were relaxed and influenza transmission in-
creased shortly after the mask mandate was relaxed. 
Our results are consistent with those of several studies 
that found that PHSMs against COVID-19 may reduce 
influenza transmission (8) and that mask wearing may 
have a low to moderate protective effect against influ-
enza virus transmission in the community (9,10).

A limitation of our analysis was that we used re-
sults of survey reports to generate a proxy of intensity 
of implemented PHSMs over time, which may not be 
accurate. Also, we used a proxy measure of influenza 
activity based on surveillance data, and the reliabil-
ity of our analysis depended on the accuracy of this 
proxy. In addition, influenza vaccination coverage 
(Appendix Figure 5) was not included in the model 
because our model included the effect of vaccination 
via season-specific intercept. Nevertheless, our study 
results suggest that the resurgence of influenza after 
relaxation of PHSMs was most likely affected by the 
lifting of mask mandate and other PHSMs.
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Relaxation of China’s zero-COVID policy in De-
cember 2022 led the European Centre for Dis-

ease Prevention and Control to recommend several 
nonpharmaceutical interventions to curb COVID-19 
spread and monitor any emerging SARS-CoV-2 vari-
ants; those interventions included wastewater-based 
surveillance (1). We report results of subsequent 
wastewater surveillance of aircraft arriving at Co-
penhagen Airport in Copenhagen, Denmark, directly 
from Beijing or Shanghai, China.

During weeks 2–6 of 2023 (January 9–February 
12), a total of 14 aircraft arrived at Copenhagen 

Airport from China. A service truck extracted waste 
from the aircraft by using vacuum pressure, after 
which a rinsing program was performed, and the dis-
infectant Idu-Flight (Brenntag Nordic A/S, https://
www.brenntag.com) was added to the waste tank. 
Wastewater samples were collected as grab samples 
from the service truck and immediately transported 
to Statens Serum Institut in Copenhagen for analysis.

The pH value of the sample material ranged from 
9–10 because of the addition of Idu-Flight. Idu-Flight 
contains the active ingredients glutaraldehyde and 
benzalkonium chloride; the disinfectant is expected to 
negatively affect the stability of virus particles and hin-
der amplification of RNA sequences. We adjusted the 
samples to pH 7.5–8.5 by using HCl and homogenized 
them by vigorous vortexing. We split the 14 samples 
into a total of 43 aliquots and then centrifuged those 
at either 4,000 × g or 10,000 × g for 10 min to pellet 
solid material. For the first aliquot from aircraft AC1, 
we analyzed 10 mL of sample material without any 
centrifugation; for all other samples, we analyzed 10 
mL of supernatant after centrifugation. We purified vi-
ruses by using NanoTrap Microbiome A particles (Ce-
res Nanosciences Inc., https://www.ceresnano.com) 
and RNA by using Maxwell RSC Cartridges (Promega 
Corporation, https://www.promega.com). We per-
formed quantitative reverse transcription PCR (qRT-
PCR) in technical triplicate by using the GoTaq Enviro 
kit (Promega) and the US Centers for Disease Control 
and Prevention N2 primer/probe for SARS-CoV-2 de-
tection (Table; Appendix Table, https://wwwnc.cdc.
gov/EID/article/29/12/23-0717-App1.pdf).

Of the 43 qRT-PCR reactions, 31 (72%) were posi-
tive for SARS-CoV-2, representing 11 aircraft. We 
conducted whole-genome sequencing of samples 
from those 11 aircraft by using the Illumina MiSeq 
platform (https://www.illumina.com) according to 
the ARTIC protocol; we generated 2 × 150-bp paired-
end reads by using the ARTIC 4.1 primer scheme (2). 
Wastewater raw reads are available from the Euro-
pean Nucleotide Archive (https://www.ebi.ac.uk/
ena; accession no. PRJEB66221). We trimmed reads by 
using Trim Galore with default settings (3; https://
zenodo.org/record/5127899). We removed human 
sequence reads by using the BWA-MEM alignment 
algorithm with default settings (H. Li, unpub. data, 
http://arxiv.org/abs/1303.3997) and the human ge-
nome reference build GRCh38. We then used BWA-
MEM with default settings to map SARS-CoV-2 
reads to the SARS-CoV-2 wild-type reference genome 
(GenBank accession no. MN908947.3). We performed 

1These first authors contributed equally to this article.
2These senior authors contributed equally to this article.

We analyzed wastewater samples from 14 aircraft ar-
riving in Denmark directly from China during January 
9–February 12, 2023. Wastewater from 11 aircraft was 
SARS-CoV-2–positive by PCR; 6 predominantly con-
tained BQ.1 and XBB.1 subvariants. Wastewater-based 
surveillance can contribute to public health monitoring 
of SARS-CoV-2 and other emerging infectious agents.
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Influenza Resurgence after Relaxation of 
Public Health and Social Measures, Hong 

Kong, 2023 
Appendix 

1 Description of the Time Series 

1.1 The time series for ILI 

We collected the weekly consultation rates of influenza-like illness (ILI) reported by 

Private Medical Practitioner (PMP) Clinics (chp.gov.hk) and the weekly proportion of sentinel 

respiratory specimens that tested positive for influenza viruses in Hong Kong from October 2010 

through May 2023. 

To measure the influenza virus activity, we multiplied the ILI rates with the proportions 

of influenza-positive specimens together to obtain an influenza proxy (1). This influenza proxy 

shows a stronger correlation with the incidence of influenza virus infections in the community 

than either influenza-like illness rates or laboratory detection rates alone. We then first multiplied 

the weekly ILI rates by a constant 70, based on the previous record number of general 

practitioners in the surveillance. In addition, we divided it by 0.9 as a health seeking(HS) 

proportion for ILI symptoms in Hong Kong (2) and divided it by 0.3 as 30% of influenza cases 

have ILI symptoms (3). To ensure consistency with expected population-level infection rates, we 

used the constant to scale up the proxy values (4,5). Finally, we used flexible cubic splines to 

interpolate daily influenza proxy values from the weekly data. 

To identify influenza epidemics, we defined each season’s influenza epidemic as a period 

of at least 12 or more consecutive weeks during which the epidemic baseline was exceeded. The 

epidemic baseline was determined as 40% quantile of all the non-zero weekly influenza proxy 

for each influenza season (6). 

https://doi.org/10.3201/eid2912.230937
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1.2 Time series of meteorological data 

We retrieved 10 meteorological predictors provided by Hong Kong Observatory 

(hko.gov.hk), including pressure, temperature, relative humidity, amount of cloud, rainfall, 

number of hours of reduced visibility, total bright sunshine, global solar radiation, evaporation, 

and wind speed. Due to high correlations among these variables, we selected temperature, wind 

speed, and absolute humidity based on previous literature (5,7,8). We derived the daily mean 

absolute humidity from the mean relative humidity and mean temperature (7,9), and then 

obtained the daily and weekly absolute humidity. 

1.3 Time series of preventive measures 

We did cross-sectional telephone surveys among the general adult population in Hong 

Kong from 2020 to 2023 (10). The methods and survey instruments used were similar to those 

used for surveys during the SARS epidemic in 2003 (11,12) the influenza A H1N1 pandemic in 

2009 , and the influenza A H7N9 outbreak in China in 2013 (13). Participants were recruited 

using random-digit dialling of both landline and mobile telephone numbers. Telephone numbers 

were randomly generated by a computer system. Calls were made during both working and non-

working hours by trained interviewers to avoid over-representation of non-working groups. 

Respondents were required to be at least 18 years old and able to speak Cantonese or English. 

New respondents were recruited for each survey round. Within each household, an eligible 

household member with the nearest birthday was invited to participate in the survey, which was 

not necessarily the person that initially answered the telephone. Survey items included measures 

of risk perception, attitudes towards COVID-19, and preventive measures taken against 

contracting COVID-19, including hygiene, face masks, and reduction of social contact. All 

participants gave verbal informed consent. The prevalence of those preventive measures prior to 

2020 was set to be the baseline prevalence. 

To proxy the intensity of preventive measures against COVID -19 other than mask 

wearing, we used data from the survey to construct a preventive score (e.g., the average of 

proportions of people avoiding visiting crowded places, avoiding touching public objects or 

using protective measures when touching public objects, and washing hands immediately after 

going out). 
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2 Estimation of time-varying effective reproductive number 

2.1 Model details 

We used the framework in Cori et al (14) to estimate the Rt from real data. In brief, it 

assumes that the distribution of infectiousness through time after infection is independent of 

calendar time. Transmission then is modelled by using a Poisson process. Denote ws a 

probability distribution of the infectiousness profile since infection, therefore the rate for 

infection at time step t-s generates new infections in time step t is equal to Rtws, where Rt is the 

instantaneous reproductive number at t. Also, the incidence at time t is Poisson distributed with 

mean Rt ∑ It−sws
t
s=1 . 

Denote Yk the actual (but unobserved) number of new local cases infected on day k. 

Then, we have: 

Yt~Poisson{Rt � Ykwt−k

t−1

k=1
} 

where Rt are the time-varying effective reproductive number at time t respectively. 

2.2 Likelihood function 

We used the smoothing method as in Cori et al., assuming that the transmissibility is 

constant over a time period [t − τ + 1, t], where τ is the smoothing parameter. Hence likelihood 

at a time period t is 

P(Yt, … , Yt−τ+1|Y1, … , Yt−τ) = �
�R𝑡𝑡

τϕ(s)�Yse−R𝑡𝑡τϕ(s)

Ys!

t

s=t−τ+1

 

where ϕ(t) = ∑ Ykwt−k
t−1
k=1 . The total likelihood is the product of individual likelihood at 

each time t in the observed data. The first τ − 1 days were excluded due to τ-day smoothing. 

2.3 Priors 

We assumed the prior for Rt is Gamma(1,1.5) with mean and standard deviation equal to 

1.5. 

2.4 Estimation of model parameters 

We conducted our analysis in a Bayesian framework and used a Markov chain Monte 

Carlo (MCMC) algorithm to estimate model parameters. At each MCMC step k, we update the 
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model parameters θ by using random walk Metropolis-Hastings algorithm (15). The step size of 

the proposal was adjusted to have acceptance rate for 20-30%. 

2.5 Assumption on input parameter in data analysis 

We use the estimated distribution with mean 2.7 days (16) for serial interval. The 

empirical distribution of reporting delay would be used for a deconvolution approach by Miller 

et al. (17) to obtain the epidemic curve by infection time, which was achieved by using the 

‘fit_incidence’ function in the ‘incidental’ package in R. 

We analyse the epidemic curve up to 31 May 2023, and take τ = 14 in our analysis, to 

avoid unstable estimates for time-varying reproductive number. 

2.6 Inference 

After obtaining the epidemic curve by infection time, we use the model in Section 2.1 to 

estimate Rt. We use a Markov chain Monte Carlo approach to estimate the model parameter, as 

stated in Section 2.4. 

We accounted for the uncertainty of input parameters, including incubation period and 

infectiousness profile to obtain the final estimates of Rt in addition to model parameter 

uncertainty as follows: 

We followed the bootstrap approach (18,19) to account for the uncertainty of input 

parameters, including incubation period, to obtain the final estimates of Rt in addition to 

uncertainty of model parameters. In each iteration, we use the above deconvolution approach to 

reconstruct the epidemic curve by infection dates. Then we use above approach to estimate Rt. 

We presented the mean, 2.5% and 97.5% quantiles for those Rt estimates for each time point 

across the 200 bootstrap iterations. 

3 Construction of Multivariable Regression Models 

We used multivariable log-linear regression models to investigate the underlying 

association between the transmissibility of influenza and different driving factors. 

For meteorological factors, we tested different regression forms to investigate the 

underlying association between the transmissibility of influenza and different plausible driving 

forces. We compared linear form (𝑖𝑖. 𝑒𝑒. 𝑓𝑓𝑘𝑘𝑡𝑡, where 𝑓𝑓𝑘𝑘𝑡𝑡 are the 𝑘𝑘 − th drivers), exponential form 
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(𝑖𝑖. 𝑒𝑒.𝜑𝜑(𝑓𝑓𝑘𝑘𝑡𝑡),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜑𝜑(𝑓𝑓𝑘𝑘𝑡𝑡) = exp (𝑓𝑓𝑘𝑘𝑡𝑡)), power form (𝑖𝑖. 𝑒𝑒.𝜑𝜑(𝑓𝑓𝑘𝑘𝑡𝑡) = 𝑓𝑓𝑘𝑘𝑡𝑡
2) of associations across 

all the meteorological drivers with influenza transmissibility (Table S1). 

Following the epidemic model theory and the from aforementioned results, we construct 

a general multivariable nonlinear regression model described by te Beest et al (20). Consider 

the 𝑆𝑆0𝑗𝑗 is the susceptibles (fraction) at the start of 𝑖𝑖 th weeks of 𝑗𝑗 th epidemic and  𝑅𝑅0 is the basic 

reproduction number. Therefore, the instantaneous reproduction number 𝑅𝑅𝑖𝑖𝑗𝑗 can be written as  

𝑙𝑙𝑙𝑙𝑙𝑙�𝑅𝑅𝑖𝑖𝑖𝑖� = 𝑙𝑙𝑙𝑙𝑙𝑙� 𝑅𝑅0 𝑆𝑆0𝑖𝑖� +  𝑧𝑧𝑖𝑖  ℎ𝑖𝑖𝑖𝑖 + �𝛽𝛽𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘)
𝑘𝑘

+ �𝜑𝜑(𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖

+ 𝜖𝜖𝑖𝑖𝑖𝑖] 

𝑅𝑅𝑖𝑖𝑗𝑗 is the time varying instantaneous reproduction number on day 𝑖𝑖 of epidemic 𝑗𝑗.  𝑆𝑆0𝑗𝑗 

represents the initial fraction of susceptibles at the start of season j, ℎ𝑖𝑖𝑗𝑗 is the observed 

cumulative incidence of general practitioner consultations by patients with ILI up to week i−1 of 

season j, and 𝑧𝑧𝑗𝑗 is a seasonal effect that adjusts ℎ𝑖𝑖𝑗𝑗 to the season-effect. In addition, the season-

specific intercept could capture the pre-season influenza vaccine effect. The effect of the driving 

factors (𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘 or 𝑓𝑓𝑖𝑖𝑗𝑗𝑙𝑙) during week 𝑖𝑖 for the epidemic 𝑗𝑗, is determined by the respective 

coefficients. We treated the parameters 𝑙𝑙𝑙𝑙𝑙𝑙� 𝑅𝑅0 𝑆𝑆0𝑗𝑗� and  𝑧𝑧𝑗𝑗 as the nuisance parameters. The 

coefficient 𝛽𝛽𝑘𝑘 represents the association between 𝑅𝑅𝑖𝑖𝑗𝑗 and 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘. 𝜖𝜖𝑖𝑖𝑗𝑗~𝑁𝑁(0,𝜎𝜎2) is the error term. 

We finally define a baseline model based on intrinsic factors (depletion of susceptibles 

over time and between-season effects) only. 

i.e. 𝑙𝑙𝑙𝑙𝑙𝑙� 𝑅𝑅0 𝑆𝑆0𝑗𝑗� +  𝑧𝑧𝑗𝑗 ℎ𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗. 

Improved models including other significant factors were then created (Table S2). R-

squared (R2) was used to quantify the effects of each factor. Therefore, these ∆𝑅𝑅2 measures 

(comparing the R-square values of these models) indicate the variance in transmissibility 

explained by respective drivers. 
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Appendix Table 1. AIC values for the model incorporating intrinsic factors and different forms of meteorological drivers to identify 
the best form of association of Rt and meteorological drivers* 

Forms of Association 
∆𝑨𝑨𝑨𝑨𝑨𝑨 for associations of influenza and drivers 

Mean temperature Mean wind speed Mean absolute humidity 
Linear 6.89 0.0047 1.39 
Exponential 3.08 0.0036 0.43 
Power 0 0 0 
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Appendix Table 2. Variance Explained by the Driving Factors of Influenza Transmission in the Hong Kong, 2010 − 2023 
Driving Factor Regression Terms 𝑀𝑀∗ 𝑅𝑅2† Δ𝑅𝑅2‡ df 𝑹𝑹adj

2  § P value 
Depletion of 
susceptibles 

𝑧𝑧ℎ𝑖𝑖𝑖𝑖 0.461 0.461 158 0.458 < 0.001 

Between-season effect log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 0.899 0.438 142 0.887 < 0.001 
Absolute humidity log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝜑𝜑(𝑑𝑑𝑖𝑖𝑖𝑖1)¶ 0.903 0.004 141 0.891 0.021 
Mask log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑑𝑑𝑖𝑖𝑖𝑖2 0.902 0.003 141 0.900 0.044 
Preventive score 3 log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑑𝑑𝑖𝑖𝑖𝑖3 0.912 0.013 141 0.901 1.009e-05 
Final model log�𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝜑𝜑�𝑑𝑑𝑖𝑖𝑖𝑖1�

¶ 
+𝛽𝛽2𝑑𝑑𝑖𝑖𝑖𝑖2 +𝛽𝛽3𝑑𝑑𝑖𝑖𝑖𝑖3 

0.920 0.008 139 0.908 0.001 

School holidays log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑑𝑑𝑖𝑖𝑖𝑖4 0.902 0.003 141 0.889 0.057 
Temperature log �𝑅𝑅0𝑆𝑆0𝑖𝑖� + 𝑧𝑧𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝜑𝜑(𝑑𝑑𝑖𝑖𝑖𝑖5)¶ 0.909 0.010 141 0.897 0.0001 
*All fitted regression models take the form log �𝑅𝑅𝑖𝑖𝑖𝑖� = 𝑀𝑀 + 𝜀𝜀, and the regression terms 𝑀𝑀 differ for each model. 
† 𝑅𝑅2 is the variance of the influenza reproduction numbers that is explained by each model. 
‡ Δ𝑅𝑅2 is the proportion of the variance explained by a specific driving factor. 
§𝑅𝑅adj 

2  provides a measure of parsimony for each model. 
¶ 𝜑𝜑 is the power form association. 

 
 
 
Appendix Table 3. Estimates of the Strength of Driving Factors of Final Model on Influenza Transmission in the Hong Kong, 2010–
2023 
Driving Factor Variable Estimate 95% CI P value 
Between-season intercept Median �𝑆𝑆0𝑖𝑖�

∗ 0.833 0.635, 1.085  
Between-season depletion of 
susceptibles 

Median �𝑧𝑧𝑖𝑖�
∗ -0.176 -0.222, -0.153  

Absolute humidity 𝛽𝛽1 -0.051 -0.083, -0.018 0.003 
Mask 𝛽𝛽2 -0.288 -0.563, -0.01 0.039 
Preventive score 3 𝛽𝛽3 -1.497 -2.086, -0.908 <0.001 
∗ For regression coefficients that were specific for each season, we estimated the range of 𝑅𝑅0𝑆𝑆0𝑖𝑖 to be 0.794-0.993 and the range of 𝑧𝑧𝑖𝑖 to be -1.622 
to -0.086 . 

 
 
Appendix Table 4. Several non-pharmaceutical interventions (NPIs) included in the study 
Control measure Description Time period Notes 
Mandate quarantine    
 Departure location 
 

Compulsory quarantine is required for 
inbound travellers from specific or all 

overseas countries/regions. 

02/08/2020 – 12/28/2022 
12/29/2020 – 03/31/2022 
04/01/2022 – 08/11/2022 
08/12/2022 – 09/25/2022 

 

14 days 
21d ays 

14 or 7 days with two consecutive 
RAT negatives 

3days 
 

 Contact 
quarantined 
 

Close contacts of confirmed cases are 
required to be quarantined in a quarantine 

centre or hotel, regardless of their 
infection status. 

01/01/2020 – 02/07/2022 
02/08/2022 – 12/28/2022 

Camp 
Camp/home 

 Case isolated 
 

Confirmed cases are required to be 
isolated at hospital or isolation facility 

upon testing positive, regardless of their 
symptoms. 

01/23/2020 – 02/07/2022 
02/08/2022 – 01/30/2023 

Mandate hospital isolation 
Hospital/isolation facility/home 

Community-based    
 School closure All kindergartens, primary and secondary 

schools and private schools in Hong Kong 
should suspend face-to face classes and 

all on-campus activities 

01/25/2020 – 05/26/2020 
07/13/2020 – 09/22/2020 
12/02/2020 - 01/10/2021 
07/15/2021 – 08/31/2021 
01/14/2022 – 04/18/2022 

Closed 

 Work-from-home Special work arrangement for civil 
servants. Private business was 

encouraged to follow the work at home 
arrangements. 

01/29/2020 – 03/01/2020 
03/25/2020 – 05/03/2020 
07/20/2020 – 08/23/2020 
11/20/2020 – 01/17/2021 
01/25/2022 – 04/20/2022 

Flexible work, except for essential 
service 

 Mask mandate The mandatory mask-wearing 
requirement stipulates a person must 

wear a mask all the time when the person 
is entering or present in a specified indoor 

or outdoor public place. 

07/15/2020 – 07/28/2020 
07/28/2020 - 03/01/2023 

public indoors 
public indoors and outdoors 
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Appendix Table 5. Estimates of the strength of driving factors with backward selection on influenza transmission in the Hong Kong, 
2010–2023 
Driving Factor Estimate 95% CI P value 
Between-season intercept 0.830 0.641, 1.087  
Between-season depletion of susceptibles -0.17 -0.19, -0.118  
Temperature -0.079 -0.115, -0.044 <0.001 
Wind speed -0.031 -0.059, -0.002 0.035 
Mask -0.318 -0.593, -0.045 0.023 
Preventive score 3 -1.446 -2.036, -0.855 <0.001 
∗ For regression coefficients that were specific for each season, we estimated the range of 𝑅𝑅0𝑆𝑆0𝑖𝑖 to be 0.785-1.024 and the range of 𝑧𝑧𝑖𝑖 to be -1.575 
to -0.083 . 

 
 
 
Appendix Table 6. Effect of public health and social measures against COVID-19 on time-varying reproduction number of influenza 
with backward selection, Hong Kong, 2010-2023 
PHSM Description % Change in Rt (95% CI) 
Mask  -27 (-44 to -4) 
Preventive score 3  Avoid going to crowded places 

Avoid going to health care facilities 
Avoid touching and protect in public 

-76 (-87to -57) 

 

 

Appendix Figure 1. Influenza reproductive number based on the final model. The grey bar represents 

the weekly influenza activity in 9 epidemic seasons, showing the peak for each season. The green dot 

represents the reproduction numbers estimated from the weekly influenza proxy series and the green line 

represents the predicted reproduction numbers. The shaded area represents the 95% predictive interval. 
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Appendix Figure 2. Estimated reproductive number and driving factors. A) The gray lines represent 

absolute humidity and reproductive number during each seaso. The green and blue lines represent the 

smoothed conditional mean of absolute humidity and reproductive number respectively. B) Estimated 

reproductive number and the proportion of mask wearing and preventive scores during the 2019–20 and 

2022–23 influenza seasons. 

 

Appendix Figure 3. Time series of incidence of influenza-like-illness (ILI) in Hong Kong over 2010–2023 

(bottom) and the reproduction number (top) calculated from the ILI proxy. 
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Appendix Figure 4. The residuals of the final model, incorporating depletion of susceptibles over time 

and between-season effects, absolute humidity, mask and the preventive score, indicating goodness of 

fit. 

 

Appendix Figure 5. Pre-season influenza vaccine coverage by age group in Hong Kong during the study 

period. 


