Severe Acute Respiratory Syndrome Coronavirus 2 Transmission Potential, Iran, 2020

Kamalich Muniz-Rodriguez,¹ Isaac Chun-Hai Fung,¹ Shayesteh R. Ferdosi, Sylvia K. Ofori, Yiseul Lee, Amna Tariq, Gerardo Chowell

Author affiliations: Georgia Southern University, Statesboro, Georgia, USA (K. Muniz-Rodriguez, I.C.-H. Fung, S.K. Ofori); The Translational Genomics Research Institute, Phoenix, Arizona, USA (S.R. Ferdosi); Georgia State University School of Public Health, Atlanta, Georgia, USA (Y. Lee, A. Tariq, G. Chowell)

DOI: https://doi.org/10.3201/eid2608.200536

To determine the transmission potential of severe acute respiratory syndrome coronavirus 2 in Iran in 2020, we estimated the reproduction number as 4.4 (95% CI 3.9–4.9) by using a generalized growth model and 3.5 (95% CI 1.3–8.1) by using epidemic doubling time. The reproduction number decreased to 1.55 after social distancing interventions were implemented.

C ince early 2020, Iran has been experiencing a dev-Dastating epidemic of coronavirus disease (COV-ID-19) (1). To determine the transmission potential of severe acute respiratory syndrome coronavirus 2 and thereby guide outbreak response efforts, we calculated basic reproduction numbers (R_0) . During the early transmission phase, R₀ quantifies the average number of secondary cases generated by a primary case in a completely susceptible population, absent interventions or behavioral changes. R₀>1 indicates the possibility of sustained transmission; R_o<1 implies that transmission chains cannot sustain epidemic growth. As the epidemic continues, the effective reproduction number (R) offers a time-dependent record of the average number of secondary cases per case as the number of susceptible persons becomes depleted and control interventions take effect. We used 2 methods to quantify the reproduction number by using the curve of reported COV-ID-19 cases in Iran and its 5 regions (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/26/8/20-0536-App1.pdf). The Georgia Southern University Institutional Review Board made a non-human subjects determination for this project (H20364), under the G8 exemption category.

For method 1, we used a generalized growth model (2) with the growth rate and its scaling factor to characterize the daily reported incidence. Next, we simulated the calibrated generalized growth model by using a discretized probability distribution of the serial interval and assuming a Poisson error structure (Appendix).

We based method 2 on calculation of the epidemic's doubling times, which correspond to the times when the cumulative incidence doubles and are estimated by using the curve of cumulative daily reported cases. To quantify parameter uncertainty, we used parametric bootstrapping with a Poisson error structure around the number of new reported cases to derive 95% CIs (3–5). Assuming exponential growth, the epidemic growth rate is equal to $\ln(2)/$ doubling time. Assuming that the preinfectious and infectious periods follow an exponential distribution, $R_0 \approx (1 +$ growth rate × serial interval) (Appendix) (6).

For both methods, the serial interval was assumed to follow a gamma distribution; mean (\pm SD) = 4.41 (\pm 3.17) days (7; C. You et al., unpub. data, https://www.medrxiv.org/content/10.1101 /2020.02.08.20021253v2). We used MATLAB version R2019b (https://www.mathworks.com) and R version 3.6.2 (https://www.r-project.org) for data analyses and creating figures. We determined that a priori α = 0.05.

Using Wikipedia as a starting point, we doublechecked the daily reported new cases during February 19-March 19, 2020 (the day before the Iranian New Year) against official Iran press releases and other credible news sources and corrected the data according to official data (Appendix Tables 2, 3, Figure 1). Incident cases for the 5 regions were missing for 2 days (March 2–3), which we excluded from our analysis. Because the reported national number of new cases did not match the sum of new cases reported in Iran's 5 regions on March 5, we treated each time series as independent and used the data as reported. Using method 1, we estimated R_o data for February 19-March 1, 2020. Using method 2, we estimated R_o from the early transmission phase (February 19-March 1, 2020) and R based on the growth rate estimated during March 6-19, 2020, when the epidemic slowed, probably reflecting the effect of social distancing.

Using method 1, we estimated an R_0 of 4.4 (95% CI 3.9-4.9) for COVID-19 in Iran. We estimated a growth rate of 0.65 (95% CI 0.56–0.75) and a scaling parameter of 0.96 (95% CI 0.93–1.00) (Appendix Table 4). The scaling parameter indicated near-exponential epidemic growth (Figure). Using method 2, we found

¹These first authors contributed equally to this article.

Figure. Estimates of transmission potential for severe acute respiratory syndrome coronavirus 2 in Iran, 2020. A) Growth rate, r; B) scaling of the growth rate parameter, p; C) mean basic reproduction number, R_0 ; and D) fit of the generalized growth model (method 1) to the Iran data, assuming Poisson error structure as of March 1, 2020. Dashed lines indicate 95% CIs.

that during February 19-March 1, the cumulative incidence of confirmed cases in Iran had doubled 8 times. The estimated epidemic doubling time was 1.20 (95% CI 1.05-1.45) days, and the corresponding R_o estimate was 3.50 (95% CI 1.28-8.14). During March 6-19, the cumulative incidence of confirmed cases doubled 1 time; doubling time was 5.46 (95% CI 5.29–5.65) days. The corresponding R_o estimate was 1.55 (95% CI 1.06-2.57) (Appendix Table 5, Figures 7, 8). Our results are robust and consistent with Iran's COVID-19 R₀ estimates of 4.7 (A. Ahmadi et al., unpub. data, https://www.medrxiv.org/content/10.11 01/2020.03.17.20037671v3) and 4.86 (E. Sahafizadeh, unpub. data, https://www.medrxiv.org/content/10 .1101/2020.03.20.20038422v2) but higher than the R₀ of 2.72 estimated by N. Ghaffarzadegan and H. Rahmandad (unpub. data, https://www.medrxiv.org/ content/10.1101/2020.03.22.20040956v1).

Our study has limitations. Our analysis is based on the number of daily reported cases, whereas it would be ideal to analyze case counts by dates of symptoms onset, which were not available. Case counts could be underreported because of underdiagnosis, given subclinical or asymptomatic cases or limited testing capacity to test persons with mild illness. The rapid increase in case counts might represent a belated realization of epidemic severity and rapid catching up and testing many persons with suspected cases. If the reporting ratio remains constant over the study period, and given the near-exponential growth of the epidemic's trajectory, our estimates would remain reliable. Although data are not stratified according to imported and local cases, we assumed that persons were infected locally because transmission has probably been ongoing in Iran for some time (δ).

Although the COVID-19 epidemic in Iran has slowed substantially, the situation remains dire. Tighter social distancing interventions are needed to bring this epidemic under control.

G.C. received support from NSF grant 1414374 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program. I.C.-H.F. received salary support from the Centers for Disease Control and Prevention (CDC) (19IPA1908208). This article is not part of I.C.-H.F's CDC-sponsored projects.

About the Authors

Ms. Muniz-Rodriguez is a doctoral student in epidemiology and Dr. Fung is an associate professor of epidemiology at Jiann-Ping Hsu College of Public Health, Georgia Southern University. Their research interests include infectious disease epidemiology, digital health, and disaster emergency responses.

References

- Wood G. Coronavirus could break Iranian society [cited 2020 Feb 29]. https://www.theatlantic.com/ideas/ archive/2020/02/iran-cannot-handle-coronavirus/ 607150/
- Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics. 2016;15:27–37. https://doi.org/10.1016/j.epidem.2016.01.002
- Banks HT, Hu S, Thompson WC. Modeling and inverse problems in the presence of uncertainty: CRC Press; 2014.
- Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol. 2006;241:193–204. https://doi.org/10.1016/j.jtbi.2005.11.026
- Chowell G, Shim E, Brauer F, Diaz-Dueñas P, Hyman JM, Castillo-Chavez C. Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico. Stat Med. 2006;25:1840–57. https://doi.org/10.1002/sim.2352
- Vynnycky E, White RG. An introduction to infectious disease modelling. Oxford (UK): Oxford University Press; 2010.
- Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–6. https://doi.org/10.1016/ j.ijid.2020.02.060
- Tuite AR, Bogoch II, Sherbo R, Watts A, Fisman D, Khan K. Estimation of coronavirus disease 2019 (COVID-19) burden and potential for international dissemination of infection from Iran. Ann Intern Med. 2020. https://doi.org/10.7326/ M20-0696

Address for correspondence: Isaac Chun-Hai Fung, Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, PO Box 7989, Statesboro, GA 30460-7989 USA; email: cfung@georgiasouthern.edu; or Gerardo Chowell, Department of Population Health Sciences, School of Public Health, Georgia State University, Suite 662, Office 640B, Atlanta, GA 30303, USA; email: gchowell@gsu.edu.

Cluster of Coronavirus Disease Associated with Fitness Dance Classes, South Korea

Sukbin Jang, Si Hyun Han, Ji-Young Rhee

Author affiliation: Dankook University Hospital, Dankook University College of Medicine, Cheonan, South Korea

DOI: https://doi.org/10.3201/eid2608.200633

During 24 days in Cheonan, South Korea, 112 persons were infected with severe acute respiratory syndrome coronavirus 2 associated with fitness dance classes at 12 sports facilities. Intense physical exercise in densely populated sports facilities could increase risk for infection. Vigorous exercise in confined spaces should be minimized during outbreaks.

By April 30, 2020, South Korea had reported 10,765 cases of coronavirus disease (COVID-19) (1); ≈76.2% of cases were from Daegu and North Gyeongsang provinces. On February 25, a COVID-19 case was detected in Cheonan, a city ≈200 km from Daegu. In response, public health and government officials from Cheonan and South Chungcheong Province activated the emergency response system. We began active surveillance and focused on identifying possible COVID-19 cases and contacts. We interviewed consecutive confirmed cases and found all had participated in a fitness dance class. We traced contacts back to a nationwide fitness dance instructor workshop that was held on February 15 in Cheonan.

Fitness dance classes set to Latin rhythms have gained popularity in South Korea because of the high aerobic intensity (2). At the February 15 workshop, instructors trained intensely for 4 hours. Among 27 instructors who participated in the workshop, 8 had positive real-time reverse transcription PCR (RT-PCR) results for severe acute respiratory syndrome coronavirus 2, which causes COVID-19; 6 were from Cheonan and 1 was from Daegu, which had the most reported COVID-19 cases in South Korea. All were asymptomatic on the day of the workshop.

By March 9, we identified 112 COVID-19 cases associated with fitness dance classes in 12 different sports facilities in Cheonan (Figure). All cases were confirmed by RT-PCR; 82 (73.2%) were symptomatic and 30 (26.8%) were asymptomatic at the time of laboratory confirmation. Instructors with very mild symptoms, such as coughs, taught classes for \approx 1 week after attending the workshop

Severe Acute Respiratory Syndrome Coronavirus Transmission Potential, Iran, 2020

Appendix

Estimate of reproduction number from daily reported cases (Method 1)

Using the daily curve of reported cases in Iran, we estimate the reproduction number of COVID-19 (Appendix Table 2, Figure 1). For this purpose, we first characterize the daily reported incidence using the generalized growth model (GGM) (1). This model characterizes the growth profile via two parameters: the growth rate parameter (r) and the scaling of the growth rate parameter (p). The model captures diverse epidemic profiles ranging from constant incidence (p = 0), sub-exponential or polynomial growth (0), and exponential growth (<math>p = 1) (1). The serial interval is assumed to follow a gamma distribution with a mean of 4.41 days and a standard deviation of 3.17 days based on recent reports ([2]; C. You et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.02.08.20021253v2).

Next, to estimate the most recent estimate of R_t , we simulate the progression of incident reported cases from the calibrated GGM, and apply the discretized probability distribution (ρ_i) of the serial interval using the renewal equation (3–5) given by

$$R_{t_i} = \frac{I_i}{\sum_{j=0}^i (I_{i-j})\rho_i}.$$

In the renewal equation we denote the total incidence at calendar time t_i by I_i . Here, the denominator represents the total number of cases that contribute to the incidence cases at time t_i . Next, we estimate R_t from 300 simulated curves assuming a Poisson error structure to derive the uncertainty bounds around our estimate of the reproduction number (6) (Appendix Table 4).

Estimate of reproduction number from epidemic doubling times (Method 2)

We ran simulation to generate 10,000 sets of estimates of epidemic doubling times for a given time series of cumulative number of reported cases (Appendix Table 3), and to compute the arithmetic mean of each set. Then, the harmonic mean of these estimates was calculated across 10,000 sets of simulations and was reported as our estimated epidemic doubling time, with 95% confidence interval (Appendix Table 5).

Next, we drew 10,000 random values for the serial interval from a gamma distribution with a mean of 4.41 days and a standard deviation of 3.17 days (2); C. You et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.02.08.20021253v2). We generate 10,000 values for the reproduction number by calculating the reproduction number for each pair of values (arithmetic mean of epidemic doubling time and serial interval respectively) following the equation as in Vynnycky and White (7), Table 4.1, Equation 4.14:

Reproduction number = $1 + \text{growth rate} \times \text{serial interval}$

We reported the mean and 95% confidence intervals (CI) of the 10,000 estimated values of the reproduction number (Appendix Table 5).

Results for Regions of Iran

Iran is geographically arranged into five regions, each of which contains a number of provinces (see Appendix Table 1). In addition to estimating the reproduction number of COVID-19 across Iran, we further analyzed the data for each of the five regions of Iran.

Appendix Tables 4 and 5, and Figures 2–8, present our estimates for Regions 1 to 5 using Methods 1 and 2. The estimates obtained from Method 1 had a smaller variance. The estimates obtained from Method 2 had a larger variance, given the large variance of the serial interval estimate that we used. Given that the 95% CIs of our reproduction number estimates obtained via Method 2 were large, they overlapped with those obtained via Method 1.

From February 19 through March 1, it appeared that whether it was for Iran as a whole, or for its five regions, the point estimate of the estimated basic reproduction number for each region was 2.0 or higher before the effect of social distancing interventions kicked in. From March 6 through 19, the effective reproduction number for each region had dropped to a range

from 1.48 of Region 3 to 1.77 of Region 5. However, the 95% CI of each region's estimate does not overlap with 1. Therefore, the transmission of SARS-CoV-2 (that causes COVID-19) remains active in all 5 regions of Iran (as effective reproduction number >1) before the Persian New Year Day of March 20, 2020.

This study in the context of recent pre-print literature on the 2020 COVID-19 epidemic in Iran

On April 2, 2020, we searched for "COVID-19" and "Iran" on medRXiv pre-print servers and identified 6 manuscripts that fit mathematical or statistical models to COVID-19 case count data obtained via official Iranian reports. See Appendix Table 6 for a summary. Three of these papers provide reproduction number estimates (A. Ahmadi et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.03.17.20037671v3; N. Ghaffarzadegan et al., unpub. data, ttps://www.medrxiv.org/content/10.1101/2020.03.22.20040956v1; Sahafizadeh et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.03.20.20038422v2). Our estimates of the basic reproduction number are comparable to theirs. These three papers also identified a lower effective reproduction number for the Iranian epidemic once social distancing interventions kicked in. However, only one paper suggested that the effective reproduction number has dropped below unity by March 20, 2020 (N. Ghaffarzadegan et al., unpub. data, ttps://www.medrxiv.org/content/10.1101/2020.03.22.20040956v1). The other two estimated an effective reproduction number >1 (A. Ahmadi et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.03.17.20037671v3; Sahafizadeh et al., unpub. data, https://www.medrxiv.org/content/10.1101/2020.03.20.20038422v2), that is consistent with our results.

References

- Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics. 2016;15:27–37. PMID: 27266847
- Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–6. <u>PubMed https://doi.org/10.1016/j.ijid.2020.02.060</u>

- Nishiura H, Chowell G. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Euro Surveill. 2014;19:20894. <u>PubMed https://doi.org/10.2807/1560-7917.ES2014.19.36.20894</u>
- Nishiura H, Chowell G. The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In: Chowell G, Hyman JM, Bettencourt LMA, Castillo-Chavez C, editors. Mathematical and Statistical Estimation Approaches in Epidemiology. 2009. p. 103– 21.
- 5. Paine S, Mercer GN, Kelly PM, Bandaranayake D, Baker MG, Huang QS, et al. Transmissibility of 2009 pandemic influenza A(H1N1) in New Zealand: effective reproduction number and influence of age, ethnicity and importations. Euro Surveill. 2010;15:19591. <u>PubMed</u>
- 6. Chowell G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect Dis Model. 2017;2:379–98. <u>PubMed</u> <u>https://doi.org/10.1016/j.idm.2017.08.001</u>
- 7. Vynnycky E, White RG. An introduction to infectious disease modelling. Oxford: Oxford University Press; 2010.

Appendix Table 1. Regions and provinces of Iran. Region Provinces Qom Province (QOM), Tehran Province (TEH), Mazandaran 1 Province (MAZ), Alborz Province (ALB), Semnan Province (SEM), Golestan Province (GOL), Qazvin Province (QAZ). 2 Esfahan (ESF), Fars (FRS), Hormozgan (HOR), Kohgiluyeh and Boyer-Ahmad (KOH), Chaharmahal and Bakhtiari (CHA), and Bushehr (BUS) 3 Gilan Province (GIL), Ardabil Province (ARD), East Azerbajian Province (AZS), West Azerbajian Province (AZG), Kurdistan (or Kordestan) Province (KUR). 4 Markazi (MAR), Hamedan (HAM), Khazistan (KHZ), Kermanshah (KRS), Lorestan (LOR), and Ilam (ILM). Razavi Khorasan (KHR), Sistan and Baluchestan (SIS), Yazd (YAZ), 5 South Khorasan (KHS), Kerman (KER), and North Khorasan (KHN).

Page 4 of 15

Appendix Table 2. Dail	v number of new reported	COVID-19 cases in	Iran and its five regions*

Date (yyyy-mm-						
dd)	Iran	Region 1	Region 2	Region 3	Region 4	Region 5
2020-02-19	2	2	-	-	-	-
2020-02-20	3	2	-	-	1	-
2020-02-21	13	11	-	2	-	-
2020-02-22	10	10	-	-	-	-
2020-02-23	15	12	-	2	1	-
2020-02-24	18	11	2	2	3	-
2020-02-25	34	29	2	2	0	1
2020-02-26	44	21	5	10	6	2
2020-02-27	106	58	8	32	6	2
2020-02-28	143	98	10	32	3	0
2020-02-29	205	125	20	31	23	6
2020-03-01	385	245	23	28	67	22
2020-03-02	523	422.1805†	20.9259†	30.8184†	42.1267†	11.1281†
2020-03-03	835	528.6418†	17.0741†	39.4146†	59.4522†	16.0099†
2020-03-04	586	424	15	54	62	31
2020-03-05	591‡	256	150	122	49	69
2020-03-06	1234	693	180	175	112	74
2020-03-07	1076	663	126	99	82	106
2020-03-08	743	378	104	68	140	53
2020-03-09	595	265	89	119	92	30
2020-03-10	881	508	72	63	138	100
2020-03-11	958	485	200	90	78	105
2020-03-12	1075	605	62	150	183	75
2020-03-13	1289	614	147	237	121	170
2020-03-14	1365	624	173	272	186	110
2020-03-15	1209	562	149	156	126	216
2020-03-16	1053	480	189	160	97	127
2020-03-17	1178	566	118	203	134	157
2020-03-18	1192	505	255	199	120	113
2020-03-19	1046	359	160	210	140	177

*COVID-19, coronavirus disease. †The daily new cases for each of the 5 regions on March 2 and 3, 2020, were interpolated using cubic spline. ‡The reported number of the national total on March 5 does not match the sum of the 5 regions.

Date (yyyy-mm-								
dd)	Iran	Region 1	Region 2	Region 3	Region 4	Region 5		
2020-02-19	2	2	-	-	-	-		
2020-02-20	5	4	-	-	1	-		
2020-02-21	18	15	-	2	1	-		
2020-02-22	28	25	-	2	1	-		
2020-02-23	43	37	-	4	2	-		
2020-02-24	61	48	2	6	5	-		
2020-02-25	95	77	4	8	5	1		
2020-02-26	139	98	9	18	11	3		
2020-02-27	245	156	17	50	17	5		
2020-02-28	388	254	27	82	20	5		
2020-02-29	593	379	47	113	43	11		
2020-03-01	978	624	70	141	110	33		
2020-03-02	1501	NR	NR	NR	NR	NR		
2020-03-03	2336	NR	NR	NR	NR	NR		
2020-03-04	2922	1984	183	345	273	82		
2020-03-05	3513	2240	333	467	322	151		
2020-03-06	4747	2933	513	642	434	225		
2020-03-07	5823	3596	639	741	516	331		
2020-03-08	6566	3974	743	809	656	384		
2020-03-09	7161	4239	832	928	748	414		
2020-03-10	8042	4747	904	991	886	514		
2020-03-11	9000	5232	1104	1081	964	619		
2020-03-12	10075	5837	1166	1231	1147	694		
2020-03-13	11364	6451	1313	1468	1268	864		
2020-03-14	12729	7075	1486	1740	1454	974		
2020-03-15	13938	7637	1635	1896	1580	1190		
2020-03-16	14991	8117	1824	2056	1677	1317		
2020-03-17	16169	8683	1942	2259	1811	1474		
2020-03-18	17361	9188	2197	2458	1931	1587		
2020-03-19	18407	9547	2357	2668	2071	1764		
*NR, not reported by the Iranian Government.								

Appendix Table 3. Daily cumulative number of daily reported COVID-19 cases in Iran*

Appendix Table 4. Method 1 (February 19 through March 1, 2020): Estimated epidemic growth rate (95% Confidence intervals, CI), scaling parameter (95% CI) and basic reproduction number obtained via a generalized growth model.

Location	Epidemic growth rate (r, 95% CI)	Scaling parameter, p	Basic reproduction number (95% CI)
Iran	0.65 (0.56, 0.75)	0.96 (0.93, 1)	4.4 (3.9, 4.9)
Region 1	0.55 (0.51, 0.65)	0.99 (0.94, 1)	4.3 (3.8, 4.6)
Region 2	1.20 (0.58, 2.20)	0.76 (0.52, 1)	3.4 (2.3, 5.0)
Region 3	3.00 (1.50, 5.00)	0.52 (0.37, 0.69)	2.1 (1.7, 2.7)
Region 4	0.75 (0.67, 0.96)	0.97 (0.87, 1)	5.8 (4.4, 6.4)
Region 5	0.83 (0.68, 1.30)	0.94 (0.72, 1)	6.0 (3.8, 7.3)

Appendix Table 5. Method 2 (February 19 through March 1, and March 6 through 19, 2020): Estimated epidemic doubling time (95% Confidence intervals, CI), epidemic growth rate (95% CI) and the basic (or effective) reproduction number (95% CI) obtained via Method 2. Epidemic growth rate (r) = ln(2)/doubling time. Reproduction number was calculated based on equation: R0 = 1 + growth rate x serial interval, assuming serial interval following a gamma distribution with a mean of 4.41 days and a standard deviation of 3.17 days.

	Estimated epidemic doubling times (95% CI)*		Epidemic gro	owth rate (r, 95% CI)	Basic Reproduction number (95% CI) §	Effective Reproduction number (95% CI) §
Location	Feb 19 – Mar 1	Mar 6 – 19	Feb 19 – Mar 1	Mar 6 – 19	Feb 19 – Mar 1	Mar 6 – 19
Iran	1.20 (1.05, 1.45)	5.46 (5.29, 5.65)	0.58 (0.48, 0.66)	0.13 (0.12, 0.13)	3.50 (1.28, 8.14)	1.55 (1.06, 2.57)
Region 1	1.32 (1.16, 1.61)	6.04 (5.80, 6.29)	0.53 (0.43, 0.60)	0.11 (0.11, 0.12)	3.28 (1.26, 7.59)	1.50 (1.06, 2.42)
Region 2	1.12 (0.87, 1.59)	5.71 (5.32, 6.04)	0.62 (0.44, 0.80)	0.12 (0.11, 0.13)	3.69 (1.29, 8.84)	1.53 (1.06, 2.50)
Region 3	1.38 (1.12, 1.78)	6.23 (5.86, 6.51)	0.50 (0.39, 0.62)	0.11 (0.11, 0.12)	3.17 (1.24, 7.24)	1.48 (1.06, 2.37)
Region 4	1.67 (1.43, 2.30)	5.19 (4.58, 5.79)	0.41 (0.30, 0.49)	0.13 (0.12, 0.15)	2.79 (1.20, 6.15)	1.58 (1.07, 2.65)
Region 5	1.13 (0.92, 1.61)	3.92 (3.54, 4.32)	0.62 (0.43, 0.75)	0.18 (0.16, 0.20)	3.66 (1.30, 8.79)	1.77 (1.09, 3.19)

*Harmonic mean of the arithmetic means of 10,000 sets of simulated epidemic doubling times. §Calculated based on the 10,000 arithmetic means of 10000 sets of simulated epidemic doubling times and 10,000 random numbers drawn from a gamma distribution with a mean serial interval of 4.41 days (SD: 3.17 days).

						Effective
	medRXiv	Iranian official				reproduction
	pre-print	COVID-19			Basic	number after
	version as of	reports†: time	Other data		reproduction	social distancing
Papers	Apr 2, 2020	range	sources	Methods	number	implemented
A. Ahmadi et al., unpub. data,	Pre-print	February 19	Not applied	Logistic differential	4.7	1.75 (Gompertz)
https://www.medrxiv.org/content/10.1101/2020.03.17.20037671v3	version 2	through March		equation, Gompertz		
		19, 2020		differential equation, Von		
				Bertalantfy's differential		
				growth equation, Cubic		
N Chaffarzadagan at al unnub data	Dro print	Echruczy 10	Linofficial reports:		2 72 (00% CI	at by Marah 20
https://www.medrviv.org/content/10.1101/2020.03.22.20040956v1	version 1	through March	and international	model fit to reported data	2.72 (90 % CI,	2020
111po.//www.incurxiv.org/obinoing/10.1101/2020.00.22.2004000001	Version 1	19 2020	media news		2.01, 2.02)	2020
		10, 2020	reports			
E. Sahafizadeh et al., unpub. data,	Pre-print	February 22	Not applied	Compartmental (SIR)	4.86 (1st	4.5 (2 nd week);
https://www.medrxiv.org/content/10.1101/2020.03.20.20038422v2	version 2	through March		model fit to data	week, with	4.29 (3 rd week);
		18, 2020			Feb 19, 2020	2.1 (4 th week)
					as day zero)	
A. Zahiri et al., unpub data,	Pre-print	February 19	China's official	Compartmental (SIR)	Not reported	Not reported
https://www.medrxiv.org/content/10.1101/2020.03.29.20046532v1	version 1	through March	COVID-19	model fit to data; also fit		
		24, 2020	reports	Iranian data to the		
B Zaroje et al. unnuh data	Pre-print	January 22t	China's official	Compartmental (SIR)	Not reported	Not reported
bttps://www.medrxiv.org/content/10.1101/2020.03.19.20038950v1	version 1	to March 8		model fit to China's data	Not reported	Not reported
nipo.//www.incurxiv.org/content/10.1101/2020.00.10.200000001	Verbierr	2020	reports	to obtain parameter		
		2020	1000110	estimates and then		
				applied to Iran's data		
C. Zhan et al., unpub data,	Pre-print	February 19	China's official	Compartmental (SEIR)	Not reported	Not reported
https://www.medrxiv.org/content/10.1101/2020.03.08.20032847v1	version 1	through March	COVID-19	model fit to epidemic		
		6, 2020	reports	data in 367 cities in		
				China to generate		
				historical profiles of		
				epidemics (sets of		
				parameter values) that		
				observed data in South		
				Korea Italy and Iran to		
				make predictions based		
				on the best-fit epidemic		
				profiles of the SEIR		
				model		
*Notes: Manuscript pre-prints uploaded to medRXiv server (medrxiv.org) are	working papers a	nd they are not (or	have not yet been) pee	r-reviewed.		

Appendix Table 6. Manuscript pre-prints on the COVID-19 epidemic in Iran fit to Iranian official reports available on medRXiv as of April 2, 2020*

†The abstract of Zareie et al. mentioned "January 22"; however, the first confirmed cases of Iran were reported on February 19, 2020. ‡Official daily reports of deaths, recovered and cumulative number of infected individuals from the Iranian Ministry of Health and Medical Education.

Appendix Figure 1. Cumulative incidence curve of Iran and its Regions 1 to 5. The data for the five regions on March 2 and 3, 2020 were imputed.

Appendix Figure 2. Method 1: Region 1. The mean basic reproduction number of COVID-19 in Region 1, Iran, with 95% confidence interval. Estimates for growth rate, r, and the scaling of the growth rate parameter, p, are also provided. The plot in the lower panel depicts the fit of the Generalized Growth Model to the Iranian data assuming Poisson error structure as of March 1, 2020.

Appendix Figure 4. Method 1: Region 3. The mean basic reproduction number of COVID-19 in Region 3, Iran, with 95% confidence interval. Estimates for growth rate, r, and the scaling of the growth rate parameter, p, are also provided. The plot in the lower panel depicts the fit of the Generalized Growth Model to the Iranian data assuming Poisson error structure as of March 1, 2020.

Appendix Figure 5. Method 1: Region 4. The mean basic reproduction number of COVID-19 in Region 4, Iran, with 95% confidence interval. Estimates for growth rate, r, and the scaling of the growth rate parameter, p, are also provided. The plot in the lower panel depicts the fit of the Generalized Growth Model to the Iranian data assuming Poisson error structure as of March 1, 2020.

Appendix Figure 6. Method 1: Region 5. The mean basic reproduction number of COVID-19 in Region 5, Iran, with 95% confidence interval. Estimates for growth rate, r, and the scaling of the growth rate parameter, p, are also provided. The plot in the lower panel depicts the fit of the Generalized Growth Model to the Iranian data assuming Poisson error structure as of March 1, 2020.

Appendix Figure 7. Method 2: Part 1 (February 19 through March 1, 2020): The COVID-19 epidemic doubling time (black diamond) and the harmonic mean of the arithmetic means of 10,000 estimates with 95% confidence intervals (circle and bar) of Iran and its five regions.

Appendix Figure 8. Method 2: Part 2 (March 6 through 19, 2020): The COVID-19 epidemic doubling time (black diamond) and the harmonic mean of the arithmetic means of 10,000 estimates with 95% confidence intervals (circle and bar) of Iran and its five regions.