Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil

Angélica Cristine Almeida Campos, Luiz Gustavo Bentim Góes, Andres Moreira-Soto, Cristiano de Carvalho, Guilherme Ambar, Anna-Lena Sander, Carlo Fischer, Adriana Ruckert da Rosa, Debora Cardoso de Oliveira, Ana Paula G. Kataoka, Wagner André Pedro, Luzia Fátima A. Martorelli, Luzia Helena Queiroz, Ariovaldo P. Cruz-Neto, Edison Luiz Durigon,¹ Jan Felix Drexler¹

Screening of 533 bats for influenza A viruses showed subtype HL18NL11 in intestines of 2 great fruit-eating bats (*Artibeus lituratus*). High concentrations suggested fecal shedding. Genomic characterizations revealed conservation of viral genes across different host species, countries, and sampling years, suggesting a conserved cellular receptor and wide-ranging occurrence of bat influenza A viruses.

Influenza A viruses are major causes of human disease and are predominantly maintained in avian reservoirs (1). The segmented influenza A genome facilitates reassortment events in birds or intermediate hosts, such as swine and horses, leading to emergence of new variants potentially capable of causing zoonotic infections (2). Bats are major sources of zoonotic pathogens (3). In pioneering studies from 2012 and 2013, the first bat influenza A viruses,

Author affiliations: Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany (A.C.A. Campos, L.G.B. Góes, A. Moreira-Soto, A.-L. Sander, C. Fischer, J.F. Drexler); Universidade de São Paulo-USP, Instituto de Ciências Biomédicas-ICB, São Paulo, Brazil (A.C.A. Campos, L.G.B. Góes, E.L. Durigon); Universidade Estadual Paulista Faculdade de Medicina Veterinária de Araçatuba, Araçatuba, Brazil (C. de Carvalho, W.A. Pedro, L.H. Queiroz); Universidade Estadual Paulista, Instituto de Biociências, Rio Claro, Brazil (G. Ambar, A.P. Cruz-Neto); Centro de Controle de Zoonoses, São Paulo (A.R. da Rosa, D.C. de Oliveira, L.F.A. Martorelli, A.P.G. Kataoka); German Centre for Infection Research, Germany (J.F. Drexler); Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia (J.F. Drexler)

termed H17N10 and H18N11, were discovered in 2 bat species, *Sturnira lilium* (little yellow-shouldered bat) and *Artibeus planirostris* (flat-faced fruit-eating bat) (4,5).

Bat-associated influenza A viruses are phylogenetically highly divergent from avian-associated influenza A viruses in their hemagglutinin (HA) and neuraminidase (NA) genes, suggesting these viruses represent ancient influenza A strains (2). Consistent with their genetic divergence, batassociated influenza A surface proteins lack typical hemagglutination and neuraminidase activities (6), leading to the terminology HA-like (HL) and neuraminidase-like (NL) for bat-associated influenza surface proteins.

So far, only 4 individual bat specimens yielded influenza A genomic sequences during the pivotal investigations (4,5). HL18NL11 has only been found in 1 *A. planirostris* bat captured in Peru in 2010 (5), challenging definite host assessments. To investigate bat influenza A virus epidemiology, we investigated bats in southern Brazil during 2010–2014.

The Study

For this study, we sampled 533 individual bats representing 26 species and 3 families across 28 sampling sites (Table 1). Bats were captured using mist nets, euthanized, and necropsied and were identified on the basis of morphological criteria by trained field biologists as described previously (7). Only intestine samples were available for virological analyses. The Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais (21748–1), Instituto Ambiental do Paraná (235/10), and the ethics committee of the Institute of Biomedical Science from the University of São Paulo (56–18–03/2014) authorized sampling.

We tested intestine specimens from all bats using 2 highly sensitive, broadly reactive nested reverse transcription PCRs targeting different regions of the influenza A polymerase basic (PB) 1 gene (5,8). Positive results on both tests came from only 2 samples, from *Artibeus lituratus* great fruit-eating bats captured on March 7 and March 12, 2012, at 2 locations separated by 12 km in an Atlantic rainforest patch. No other sample was positive, yielding a 10.0% (2/20) overall detection rate in this site and 16.7% (2/12) detection in *A. lituratus* bats from this site (Table 1; Figure 1, panel A). Neither bat testing positive for influenza A virus showed signs of disease.

DOI: https://doi.org/10.3201/eid2502.181246

¹These senior authors contributed equally to this article.

DISPATCHES

Table 1. Bat species screened for influenza A virus, Brazil, 2010–2014*								
		No.	No. (%) PCR					
Species	Family	samples	positive	Sampling site	Sampling years			
Artibeus fimbriatus	Phyllostomidae	3	0	Iguaçu	2012			
Artibeus lituratus	Phyllostomidae	129	2 (1.6)	Iguaçu, Central Paraná state,	2010, 2011, 2012 ,			
				São Paulo cities	2013, 2014			
Artibeus obscurus	Phyllostomidae	1	0	São Paulo cities	2013			
Artibeus planirostris	Phyllostomidae	4	0	Iguaçu, Central Paraná state, São Paulo cities	2010, 2012, 2014			
Carollia perspicillata	Phyllostomidae	44	0	Iguaçu, Central Paraná state	2010-2012			
Cynomops planirostris	Molossidae	6	0	São Paulo cities	2014			
Desmodus rotundus	Phyllostomidae	15	0	São Paulo cities	2014			
Eptesicus furinalis	Vespertilionidae	8	0	São Paulo cities	2013-2015			
Eumops auripendulus	Molossidae	1	0	São Paulo cities	2014			
Eumops glaucinus	Molossidae	44	0	São Paulo cities	2013-2015			
Eumops perotis	Molossidae	8	0	São Paulo cities	2014–2015			
Glossophaga soricina	Phyllostomidae	27	0	São Paulo cities	2013-2015			
Lasiurus cinereus	Vespertilionidae	1	0	São Paulo cities	2013			
Lasiurus ega	Vespertilionidae	1	0	São Paulo cities	2014			
Molossus molossus	Molossidae	115	0	São Paulo cities	2013–2015			
Molossus rufus	Molossidae	63	0	São Paulo cities	2013-2015			
Myotis nigricans	Vespertilionidae	13	0	São Paulo cities	2013–2015			
Myotis riparius	Vespertilionidae	1	0	São Paulo cities	2013			
Nyctinomops laticaudatus	Molossidae	3	0	São Paulo cities	2014–2015			
Nyctinomops macrotis	Molossidae	1	0	São Paulo cities	2014			
Phyllostomus discolor	Phyllostomidae	2	0	São Paulo cities	2014			
Platyrrhinus lineatus	Phyllostomidae	4	0	São Paulo cities	2014			
Promops nasutus	Molossidae	1	0	São Paulo cities	2014			
Sturnira lilium	Phyllostomidae	28	0	Iguaçu, Central Paraná state	2010-2012			
Tadarida brasiliensis	Molossidae	9	0	São Paulo cities	2014			
Vampyressa pusila	Phyllostomidae	1	0	Central Paraná state	2012			
Total		533	2(0.4)					

Table 4 Date			D=====================================
Table T. Dat s	species screened for	innuenza A virus,	DIAZII, 2010–2014

*Sampling sites were Parque Nacional do Iguaçu, Atlantic rainforest in western Paraná (Iguaçu); 26 cities across São Paulo state (São Paulo cities); and forest fragment in Paraná state (Central Paraná state). Bold indicates the site and year in which bats were captured that tested positive for influenza A virus.

A. lituratus bats were the most abundantly sampled species (Table 1).

The low overall influenza virus detection rate in this study (0.4%, 95% CI 0.0%-1.5%) was not significantly different by Fisher exact test from the previous 2 studies (1/110 bats for HL18NL11 [0.9%, 95% CI 0.0%-5.5%; p = 0.43]; 3/316 bats for HL17NL10 [1.0%, 95% CI 0.0%-2.9%; p = 0.37]). Apparently low rates of acute influenza A virus infection in bats are not consistent with high seroprevalence of 72% in different bat species according to a preliminary investigation (5) and may hint at seasonal variation in bat influenza virus infections, comparable to other batborne RNA viruses (9).

Sanger sequencing of the screening PCR amplicons suggested close genetic relatedness of the strains circulating in Brazil with the HL18NL11 strain circulating in Peru. Virus concentrations in the positive intestine specimens as determined by strain-specific quantitative real-time reverse transcription RT-PCR (Appendix Table 1, https://wwwnc. cdc.gov/EID/article/25/2/18-1246-App.pdf) were high $(1.5 \times 10^9 \text{ and } 4.9 \times 10^{10} \text{ RNA copies/g of tissue})$. High HL18NL11 concentrations in intestinal specimens are consistent with qualitative data from the pioneering study on HL18NL11 (5) and may suggest intestinal tropism and potential fecal shedding into the environment.

We determined the full coding sequence of all 8 segments of the viral genomes using primers aiming at amplifying overlapping regions of bat influenza A virus genomes (GenBank accession nos. MH682200-15) (Appendix Table 1). The 2 HL18NL11 variants in Brazil differed by 15 nt from each other across the combined 8 genomic segments. Four of those substitutions were nonsynonymous, causing amino acid exchanges in the PB2 (V203I), PB1 (R334K), nucleoprotein (G484S), and NA (V191I) genes (Table 2; Figure 1, panel B). This finding suggests recent common ancestry of the HL18NL11 variants identified in the 2 positive bats and was consistent with their detection in the same site 5 days apart. Comparison of the full coding sequence of the novel HL18NL11 variants revealed high sequence identity between the Peru and the Brazil strains, 93.5%-96.9% nucleotide identity across all 8 genomic segments (Table 2). The genomic relatedness of Peru and Brazil HL18NL11 strains was surprising given a time span of 2 years, a geographic distance exceeding 2,000 km, and 2 different bat species that tested positive in our study and the previous study (5).

All critical amino acid residues associated with influenza A virus replication and entry (4.5) were conserved between the Brazil and the Peru HL18NL11 strains, including the HA monobasic cleavage site motif

A(HL18NL11) virus detection and genomic characterization, Brazil, 2010-2014. A) Distribution of Artibeus species bats carrying HL18NL11 in Central and South America, according to the Red List of Threatened Species from the International Union for Conservation of Nature (https:// www.iucnredlist.org). Orange star indicates the sampling site of an HL18NL11-positive bat in Peru (5); blue star indicates the sampling site of the HL18NL11positive bats in Brazil for this study. Maps were created using QGIS2.14.3 (http://www.qgis.org) with data freely available from http://www.naturalearthdata.com. B) Top, schematic representation of the genome organization of A/great fruit-eating bat/

Brazil/2301/2012 (HL18NL11) and amino acid exchanges (black lines) compared with A/great fruit-eating bat/Brazil/2344/2012 (HL18NL11) and Peru HL18NL11 (GenBank accession nos. CY125942–49). Nucleotide sequence identities between the concatenated HL18NL11 (Brazil), HL17NL10, and HL18NL11 (Guatemala and Peru) sequences were calculated in SSE version 1.2 (http://www.virus-evolution.org/Downloads/Software) with a sliding window of 200 and step size of 100 nt. C) Homology model of the HL protein of A/great fruit-eating bat/Brazil/2301/2012 viewed from the top, modeled on the published crystal structure retrieved from the SWISS-MODEL repository (https://www.swissmodel.expasy.org). The putative RBS is shown in blue, 3 highly conserved residues (W153, H183, and Y195) in HAs and HLs are in purple, and amino acid substitutions between Brazil strains and the Peru prototype strain are in red. D) Homology model of the NL of A/great fruit-eating bat/Brazil/2301/2012 viewed from the 6 residues (R118, W178, S179, R224, E276 and E425) conserved in influenza A virus neuraminidase genes are in purple, and amino acid substitutions between Brazil strains and the Peru prototype strain are in red. HA, hemagglutinin; HL, hemagglutinin-like; NL, neuraminidase-like; RBS, receptor-binding site.

PIKETR/GLF (5). Thermodynamic modeling revealed that the amino acid exchanges observed between the Brazil and Peru HL18NL11 strains did not alter the tridimensional structure of the HL and NL proteins, and neither mapped to the putative receptor binding site of the HL protein (Figure 1, panel C), nor to the putative active site of the NL protein (Figure 1, panel D) (6). This result suggests preservation of the biologic activity of these glycoproteins in different bat species and supported a broadly conserved cellular receptor of bat influenza A viruses that differs from sialic acid receptors used by avian-associated influenza A viruses (10). Significantly fewer amino acid exchanges were observed between the HL proteins of Brazil and Peru bat influenza virus than between the respective NL proteins (p = 0.007 by Fisher exact test) (Table 2). The apparently

Table 2. Comparison of influenza A(HL18NL11) strain found in bats in Brazil with prototype strains from Peru							
		Amino acid exchange site					
	Nucleotide sequence	A/great fruit-eating bat/Brazil/2301/2012	A/great fruit-eating bat/Brazil/2344/2012				
Gene	identity	(HL18NL11a)	(HL18NL11b)				
PB2	93.6%	V76I, R471K, T473N, V478I, I559V, R574K,	V76I, V203I , R471K, T473N, V478I, I559V,				
		S631N	R574K, S631N				
PB1	93.7%	V54I, T56V	V54I, T56V, R334K				
PA	94.4%	T70A, R116K, D158N, V231I, T254S, I552V,	T70A, R116K, D158N, V231I, T254S, I552V,				
		R711G	R711G				
HL	96.0%	N167T, F251L	N167T, F251L				
NP	96.8%-96.9%	N20T, K350R, L357M, I380L, I387V	N20T, K350R, L357M, I380L, I387V, G484S				
NL	93.5%	I11V, I15L, V82I, V200I, L254I, A264T, V284I,	I11V, I15L, V82I, V191I , V200I, L254I, A264T,				
		D332E, V378I, G382E	V284I, D332E, V378I, G382E				
Μ	95.4%	None	None				
NS1	94.4%	R57K	R57K				

*Bold indicates amino acid exchanges occurring in only 1 of the 2 Brazil strains compared to the Peru prototype strain. HA, hemagglutinin; HL, HA-like; M, matrix; NA, neuraminidase; NL, neuraminidase-like; NS, nonstructural protein; NP, nucleoprotein; PA, polymerase acidic; PB, polymerase basic.

Figure 1. Bat influenza

DISPATCHES

Figure 2. Phylogenetic relationships between bat influenza A viruses from Brazil and reference viruses. Phylogenetic trees show comparison of the 8 segments of representative influenza A virus genomes (PB2, PB1, PA, HA/HL, NP, NA/ NL, M, NS) with A/great fruiteating bat/Brazil/2301/2012 (HL18NL11a; GenBank accession nos. MH682200-7) and A/great fruit-eating bat/ Brazil/2344/2012 (HL18NL11b; GenBank accession nos. MH682208-15), shown in red. Maximum-likelihood trees were inferred using a general timereversible substitution model with a gamma distribution and invariant sites. Black dots represent bootstrap values >75% (1,000 replicants). Trees were generally rooted using influenza B/Lee/1940 (GenBank accession nos. DQ792894-901) (data not shown). Trees were constructed by using MEGA 6.0 (http://www.megasoftware. net). HA, hemagglutinin; M, matrix; NA, neuraminidase; NS1, nonstructural protein 1; NP, nucleoprotein; PA, polymerase acidic; PB, polymerase basic. Scale bars indicate nucleotide substitutions per site.

low rate of nonsynonymous substitutions in the HLencoding genes of bat influenza A virus variants was reminiscent of strong purifying selection acting on the hemagglutinin genes in avian-specific influenza A virus strains (11). This finding may suggest comparable evolutionary dynamics between chiropteran and avian reservoirs. Definite assessments will require considerably larger datasets of bat influenza A virus strains.

A. lituratus bats and *A. planirostris* bats, in which HL18NL11 was originally detected in Peru, represent closely related, yet genetically and morphologically clearly distinct bat species (*12*). The distribution of these bat species overlaps (Figure 1, panel A), potentially facilitating virus exchange across the populations. Phylogenetic analyses confirmed the close genetic relationship between Peru and Brazil HL18NL11 variants across all 8 segments (Figure 2; Appendix Table 2), suggesting lack of reassortment events according to the available data. Our data thus suggest host associations of HL18NL11 beyond the species level, comparable to genus-level host associations of other batborne RNA viruses such as coronaviruses (*13*).

Conclusions

The zoonotic potential of HL18NL11 is unclear, yet humanderived cell lines were susceptible to infection by chimeric vesicular stomatitis virus pseudotyped with HL18 (14). The abundance of A. lituratus bats within Latin America (Figure 1, panel A) may thus facilitate spillover infections into other vertebrates across an underrecognized geographic and host range. Finally, Artibeus spp. bats have been used previously for infection studies including viruses with evolutionary origins in bats, such as Middle East respiratory syndrome coronavirus (15). The relatively large body size of A. lituratus bats (\approx 65 g) and ease of keeping these bats under laboratory conditions may thus facilitate experimental infection studies for HL18NL11 to elucidate the exact sites of HL18NL11 replication, receptor usage, and mode of transmission.

Acknowledgments

We thank Mariana Cristine Pereira de Souza, Cairo Monteiro de Oliveira, and Luciano Matsumiya Thomazelli for laboratory support. This work was supported by FAPESP (São Paulo Research Foundation) through grants 2017/20744-5, 2014/15090-8, 2014/16320-7, 2013/11006-0, and 2008/57687-0 and the European Union's Horizon 2020 research and innovation programme through the ZIKAlliance project (grant agreement no. 734548) to J.F.D.

About the Author

Dr. Campos is a postdoctorate researcher affiliated with the University of Sao Paulo and Charité-Universitätsmedizin Berlin. Her research focuses on emerging viruses from bats.

References

- Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global patterns of influenza a virus in wild birds. Science. 2006;312:384–8. http://dx.doi.org/10.1126/ science.1122438
- Brunotte L, Beer M, Horie M, Schwemmle M. Chiropteran influenza viruses: flu from bats or a relic from the past? Curr Opin Virol. 2016;16:114–9. http://dx.doi.org/10.1016/j.coviro.2016.02.003
- Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:646–50. http://dx.doi.org/10.1038/ nature22975
- Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109:4269–74. http://dx.doi.org/10.1073/ pnas.1116200109
- Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New World bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. http://dx.doi.org/10.1371/journal.ppat.1003657
- García-Sastre A. The neuraminidase of bat influenza viruses is not a neuraminidase. Proc Natl Acad Sci U S A. 2012;109:18635–6. http://dx.doi.org/10.1073/pnas.1215857109
- Goes LGB, Campos ACA, Carvalho C, et al. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infect Genet Evol. 2016;44:510–3.

- Anthony SJ, Islam A, Johnson C, Navarrete-Macias I, Liang E, Jain K, et al. Non-random patterns in viral diversity. Nat Commun. 2015;6:8147. http://dx.doi.org/10.1038/ncomms9147
- Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, et al. Amplification of emerging viruses in a bat colony. Emerg Infect Dis. 2011;17:449–56. http://dx.doi.org/ 10.3201/eid1703.100526
- Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci U S A. 2013;110:1458–63. http://dx.doi.org/10.1073/pnas.1218509110
- Rejmanek D, Hosseini PR, Mazet JAK, Daszak P, Goldstein T. Evolutionary dynamics and global diversity of influenza A virus. J Virol. 2015;89:10993–1001. http://dx.doi.org/10.1128/ JVI.01573-15
- Larsen PA, Marchán-Rivadeneira MR, Baker RW. Speciation dynamics of the fruit-eating bats (genus *Artibeus*): with evidence of ecological divergence in Central American populations. In: Adams RA, Pedersen SC, editors. Bat evolution, ecology, and conservation. New York: Springer Science + Business Media; 2013. p. 315–339. https://doi.org/10.1007/ 978-1-4614-7397-8
- Drexler JF, Corman VM, Drosten C. Ecology, evolution, and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45–56. http://dx.doi.org/10.1016/ j.antiviral.2013.10.013
- Moreira ÉA, Locher S, Kolesnikova L, Bolte H, Aydillo T, García-Sastre A, et al. Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proc Natl Acad Sci U S A. 2016;113:12797–802. http://dx.doi.org/ 10.1073/pnas.1608821113
- Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (*Artibeus jamaicensis*). Sci Rep. 2016;6:21878. http://dx.doi.org/10.1038/srep21878

Address for correspondence: Jan Felix Drexler, Helmut-Ruska-Haus, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098 Berlin, Germany; email: felix.drexler@charite.de

EID Podcast: Bat Flight and Zoonotic Viruses

Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. The hypothesis is that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals.

Visit our website to listen: EMERGING http://www2c.cdc.gov/podcasts/player.asp?f=8632573 INFECTIOUS DISEASES

Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil

Appendix

RNA was extracted from 30 mg of tissue using the RNeasy Kit (QIAGEN, www.qiagen.com), followed by random hexamer-driven cDNA generation using the Superscript III reverse transcription kit (Thermo Scientific, www.thermofisher.com). Reactions were set up in a final volume of 20 μ L with 10 μ L of total RNA, 0.6 μ M of primers, 1x First-Strand Buffer, 0.5 mM (each) dNTP, 3.3 mM DTT, 1 µg BSA, 40 U of Rnase OUT and 200 U SuperScript III. Hemi-Nested PCRs were performed in 25 µL reactions with 1 µL of cDNA (for first rounds) or PCR template (for second rounds), 1 µM of each primer, 2.0 mM MgCl₂, 0.2 mM (each) dNTP and 1 U Platinum Taq Polymerase (Thermo Scientific). Thermocycling included a touchdown protocol with 94°C/3 min, 94°C/15 s, 68°C/30 s (-1°C per cycle) and 72°C/1 min during the first 10 cycles, followed by 45 cycles of 94°C/15 s, 58°C/30 s, 72°C/90 s, and 72°C for 7 min. Onestep real-time RT-PCR-based quantification was done using primers targeting the PB1 gene and performed in 25 µL reaction volumes with 5 µL of RNA, 2.0 mM MgCl₂, 0.2 mM (each) dNTP, 0.4 µM of each primer, 0.3 µM of probe, and 1x PCR buffer with OneStep SSIII/Taq Enzyme Mix (Thermo Scientific). Amplification involved 55°C for 20 min (RT), followed by 94°C/3 min and 45 cycles of $94^{\circ}C/15$ s and $58^{\circ}C/30$ s with fluorescence read at the $58^{\circ}C$ step, cooling at 40°C for 30 s on a LightCycler 480 thermocycler (Roche, www.roche.com). Quantification relied on photometrically quantified cRNA transcribed using the Megascript kit (Asuragen, www.asuragen.com) from a pCR4 vector containing the PCR target region (Thermo Scientific).

Appendix Table 1. Primers used for genomic amplification and sequencing

name and position	Sequence 5'- 3'	
atFluPB2F1	AGCAGAAGCAGGTCARAGATTG	
luPB2F2–632	TGGTTGCATACATGCTKGAAAGG	
luPB2F3–1333	AGRCATTTCCAAAARGACTC	
luPB2F4–1542	AAATGAAAAGGGAGAAYTWCT	
luPB2F5–1336	CATTTCCAAAAAGACTCTGGAG	
luPB2F6–677	GGTTCCTGCCAGTTGCAGG	
luPB2F7–727	CACCTAACCCAAGGCACGTG	
luPB2F8–2089	GAGTCAGCAGTGTTAAGAGG	
luPB2F9–2160	CGCAGAGCTGGATAAATTAGG	
luPB2R7–763	ATTCTCWGCTTCMCCTCCTGG	
luPB2R8–746	CCTGGWGTRTAYTGTTGCTCCC	
	name and position atFluPB2F1 'luPB2F2632 luPB2F31333 luPB2F41542 luPB2F51336 'luPB2F6677 'luPB2F8-2089 luPB2F8-2089 luPB2F9-2160 'luPB2R7-763 'luPB2R8-746	name and positionSequence 5'- 3'atFluPB2F1AGCAGAAGCAGGTCARAGATTG'luPB2F2-632TGGTTGCATACATGCTKGAAAGGluPB2F3-1333AGRCATTTCCAAAARGACTCluPB2F4-1542AAATGAAAAGGGAGAAYTWCTluPB2F5-1336CATTTCCAAAAAGACTCTGGAG'luPB2F6-677GGTTCCTGCCAGTTGCAGGG'luPB2F8-2089GAGTCAGCAGTGTTAAGAGGluPB2F9-2160CGCAGAGCTGGATAAATTAGG'luPB2R7-763ATTCTCWGCTTCMCCTCCTGG'luPB2R8-746CCTGGWGTRTAYTGTTGCTCCC

Gene	Primer name and position	Sequence 5'- 3'
	BatFluPB2R9–1678	TCCCAGTTYTTTAGTATCCAGTG
	BatFluPB2R11–1483	ATTCTYTCGTTGAAAGAGTATTCATC
	BatFluPB2R10–1762	CCYTTGGGKATTAAAGTTTGAAAWGG
	BatFluPB2R12–2256	GCTGTCTGGCTATCAGTAAGT
	BatFluPB2R13–1426	CCGGTAGTATTCCCATAATTCC
	BatFluPB2R14–1474	GACTTATTCTTATCCCAACCAGTG
	BatFluPB2R1–2314	AGTAGAAACAAGGTCATTTTTAGTG
	BRbatFluPB2F10–1000	GCTTTGGAGGCTATAACTTTAAG
	BRbatFluPB2F11–566	GATGCACAATTAGCGATCACC
	BRbatFluPB2F12–627	CCAATTATGGTTGCATACATGC
	BRbatFluPB2R15–1572	TGCTTCACTTACTTCTTCTGG
	BRbatFluPB2R16–1611	GGGATGAATTGTAGTTTATTGG
	BRbatFluPB2R17–1066	GTTAATGTTTGAAGGTTTCCAG
PB1	BatFluPB1F1	AGCAGAAGCAGGCAAACTATT
	BatFluPB1F2–1242	AGGRATGATGATGGGVATGTTC
	BatFluPB1F3–711	AARGAYGCAGAGAGAGGWAAA
	BatFluPB1F4–1593	ATGAGYATAGGMACAACAGT
	BatFluPB1F5–1923	CACCATATGGARGTIGAAAGCAC
	BatFluPB1F6-1625	CATGATMAACAATGATCTAG
	BatFluPB1F7-1251	AIGGGSAIGIICAAIAIGC
	BatFluPB1F8-1594	
	BatFluPB1F12-1920	
	DalFIUPDIFI3-1930	
	DalFluPD1F14-1901	
	BatFluPB1D4 1007	TEAACCATTEMEETTEICET
	BatFluPB1P5_2012	GETETCCATCAATCACTTC
	BatFluPB1R6_1007	TGAACCATTCMGGTTGICCT
	BatFluR1PB1-	AGTAGAAACAAGGCATTT
	2322M2M1–1010	
	BRbatFluPB1F10–1574	GAAACAATGAGTCTGCTGA
	BRbatFluPB1F11–1594	ATGAGTATAGGCACAACAG
	BRbatFluPB1R5–1424	CTACCAATTTGCAGATTCTATAG
	BRbatFluPB1R7–1076	CATGTATCCCCGTCCAAGTC
PA	BatFluPAF1	AGCAGAAGCAGGTACTTARAC
	BatFluPAF2–680	CCWCCATCATTCAAGGACTAT
	BatFluPAF3–1144	GGAYTTTGAAGATTGTAAAG
	BatFluPAF4–1266	CTCAAACTGGATYGAATTTGATG
	BatFluPAF6–1916	TGCAGAGTTCTTCTAGC
	BatFluPAF7–1943	TTCAACAGCATATATGCT
	BatFluPAF8	GCAGGTACTTARACAATGGAGAA
	BatFluPAR7–1176	GGWTCACTTTTGTATTGGAACA
	BatFluPAR8–1738	CATCTTCTCATTTCCATTCCC
	BatFluPAR9–1457	GTCTCTACATTTRGTRATTATTGG
	BatFluPAR10–1438	
	BatFluPAR11-2089	GALUCAAGGATCATTAATG
	DatFluPAR 12-273	
	BatFluPAR 13-300	
н	EluHaE1	
116	BatEluHaE2_046	ΔΟΔΟΧΟΛΟΟΟΟΙΟΛΙΤΑΤΙΑΤΙΟ
	BatFluHaF3_991	AYTGTCCYAAATATGTGAARGC
	BatFluHaF4–756	GAGTTGTCAATCCTAATCAGAATC
	BatFluHaF5–951	CATCAAAATGCGATTGGAGATTGC
	BatFluHaF6–1247	AACTGCCAAAGAATTCAAC
	BatFluHaR4–1305	CCATCATCAACTCTGTCACTGAG
	BatFluHaR5–1104	CATCAATCAWYCCTTGCCATCC
	BatFluHaR6–1729	GATTGACATTAGCTAACAC
	BatFluHaR7–242	GTTTCCCATAAGCCATGCAGG
	BatFluHaR1–1775	AGTAGAAACAAGGGTSTTT
NP	BatFluNPF1	AGCAGAAGCAGGGTTAATAATC
	BatFluNPF2–24	CACATTGTGACATTTAAAGATG
	BatFluNPF3–739	CCACAGAAAGCAATGGTTGA
	BatFluNPF4–511	AATGGACCCAAGRATGTGCTC
	BatFluNPF5–1349	ACTGACATGAGAACTGA
	BatFluNPF6–1386	ATTCTGATCCCAAAGAC
	BatFluNPF7–1344	GAATCACTGACATGAGAACTG
	BatFluNPF8–1303	GAAAACAATAATGGCTGCA

Gene	Primer name and position	Sequence 5'- 3'
	BatFluR1NP-1541NEP-	AGTAGAAACAAGGGTATT
	878	
	BatFluNPR5–1189	GTCTTGATTGCCCAATAATG
	BatFluNPR6–1482	GAAATAAGAACCCTCGTCATTC
	BatFluNPR7-251	GGTATTIGTICCTICTTCGTC
NI	BatFluNaF1	AGCAGAAGCAGGAGTTTTTMA
	BatFluNaF2_892	CAAATCTYTGGAATGATGCCAA
	BatFluNaF3_900	TGGAATGATGCCAARAGRCC
	BatEluNaHI 18E-623	TGTGAGCATCCTTTATGGAG
	BatFluNaHL17F-620	
	BatFluNaF8_1232	TTATGAATCACGTGATTG
	BatFluNaR8_310	
	BRbatEluNaR8_231	TGTTGAACTGTAGAACCT
	BPbatFluNaR0-251	GTCACCATTICATCA
	BRbatEluNaR9-302	ATTICIACICAATTCC
	Distal Tunar 10-395	
	BatFluNaR12-1390 BatFluNaP12, 1305	CAAGGAGTTTTTTCTTATACATC
	Datriunar 13-1395	
	NewDatFluNaF1	
	newBatFluNaF5-497	
	new Dat FluNar 7-949	
	newbalFluNaR4-511	
	newBatFluNaR5-573	
	newBatFluNaR6-1101	
	newBatFluNaR7-1044	ATCATGAAACCTTGGATTCC
	InseinBatFluNaF1-177	
	InseinBatFluNaF2-820	GGAACATYTSCHGGUTGGAAG
	InseinBatFluNaF3-916	ACAAATCTYTGGAATGATGCCAA
	inselnBatFluNaR1-1129	CAAATCCWTTCTKGGATCCTGG
	InseinBatFluNaR2-655	CWGTTATWATTYCTCCATAWAGGAT
	InselnBatFluNaR3-596	GACAGICCACIGAAAGCCAIC
	BRbatFluNaF9–541	TIGAAGCIGIIGGCIGGA
	BRbatFluNaF10-598	
	BRbatFluNaF13-1020	AAGACAACAACAGAGGGAGA
	BRbatFluNaR8–231	IGTIGAACIGIAGAAGCI
	BRbatFluNaR9–362	GICAGCATTIGITCATCA
	BRbatFluNaR10–993	ATTIGIAGIGICAATICC
	BatFluNaR12–1396	
	BatFluNaR13–1395	CAAGGAGTITITICITATACATCC
M2/M1	BatFluM2M1F1	AGCARAAGCAGGCATTATYCAAA
	New BatFluM2M1F1	AGCARAAGCAGGCATTATYC
	BatFluM2M1F2–575	CACTGCHAARGCCATGGARCAA
	BatFluM2M1F3–621	GCTGAAGCAATGGAAATTGC
	BRbatFluM2F4–547	GACATGAAAACCGAATGGCAAC
	BRbatFluM2F5-631	TGGAAATTGCTTCACAAG
	BatFluM2M1R2–741	ACCAGAARAGRATGGGAAT
	BatFluM2M1R3–687	CACCCAACAACTTCCAGTGG
	BatFluM2M1R4–752	CTGCATCTGGATTCCCATC
	BatFluM2M1R5–690	GGCCACTGGAAGTTGTTGG
NEP/NS1	BatFluNEPF1	AGCAGAAGCAGGGTATCTAAAG
	New BatFluNEPF1a	AGCAGAAGCAGGGTATCTAA
	BatFluNEPF2–16	TCTAAAGACATAATGGAAYC
	BatFluNEPF2–40	CCGACAACTATCGCATTTCAG
	BatFluNEPF3–514	AACCCTCTGTCTTTGTTACAG
	BatFluNEPF4–529	GTTACAGGACATACTGGAGAG
	BatFluNEPR2–583	GGATTTGAATGGAATGATAAC
	BRbatFluNEPR3–241	CATAGTAAGGCATGGCATC
	BRbatFluNEPR4–327	GATCATAATCCAATTTCTG
PB1 quantitative	FluBR-rtF1	TGCAGAAGAACTGAAYACTATAAGCTT
real-time RT-PCR		
	FluBR-rtR	TGAACATSCCCATCATCATTCC
	Probe FluBR-rtP	FAM-TYGATGGGACAGCRTCACTGAGCCC-BHQ1
*HL, hemagglutinin-like: M2	2/M1, matrix protein 2 and matrix proteir	1: NL, neuraminidase-like: NP = nucleocapsid.

NEP/NS1, nuclear export protein and non-structural protein 1; PA, PB1, PB2, polymerase genes. †Numbers in primer names indicate the first nucleotide targeted in the Peruvian HL18NL11 prototype strain. For the degenerated bases, R = G/A, Y = C/T, S = G/C, W = A/T, M = A/C, K = G/T, H = A/C/T, I = inosine. FAM, 6-carboxyfluorescein; BHQ1, Black Hole Quencher1.

NA date PB2 gene PB1 gene PA gene HA gene NP gene NA gene M gene NS gene H1 N1 1978 CY020300 CY020295 CY004462 CY004462 CY005411 CY0054111 CY0054111 CY00541			Collection								
H1 N1 1978 CY020300 CY020299 CY020298 CY020296 CY020295 CY020294 CY020297 H1 N6 1977 Aug 2 CY004465 CY004463 CY004453 CY004461 CY004461 CY004461 CY004461 CY004461 CY004461 CY004462 CY005413 CY005414 CY005417 CY032295 CY03295 CY03295 CY03295 CY03295 CY005765 CY005256 CY005761 CY0057	NA	NA	date	PB2 gene	PB1 gene	PA gene	HA gene	NP gene	NA gene	M gene	NS gene
H1 N6 1977 Aug 2 CY004465 CY004463 CY004458 CY004461 CY004460 CY004459 CY004461 H2 N1 1990 Apr 18 CY005420 CY005419 CY005413 CY005416 CY005416 CY005416 CY005415 CY005414 CY005417 H3 N8 1963 CY032290 CY032298 CY032293 CY032296 CY032295 CY032295 CY032297 CY045264 CY045267 H4 N4 1979 CY045270 CY045269 CY045268 CY045263 CY045266 CY045265 CY045264 CY005761 H5 N2 1984 Feb 9 CY05761 CY005760 CY045266 CY045267 CY04567 CY04567 CY04567 CY04567 CY04567 CY04567 CY04574 CY045473 CY045472 CY04575 H6 N2 2004 Dec 5 CY045478 CY077417 CY077418 CY077420 CY077421 CY077422 CY077423 CY077423 CY077423 CY077423 CY045767 CY004576 CY0045	H1	N1	1978	CY020300	CY020299	CY020298	CY020293	CY020296	CY020295	CY020294	CY020297
H2 N1 1990 Apr 18 CY005420 CY005419 CY005418 CY005413 CY005416 CY005415 CY005414 CY005417 H3 N8 1963 CY032200 CY032299 CY032296 CY032295 CY032295 CY032294 CY060265 CY060265 CY060265 CY060265 CY045266 CY045266 CY045266 CY045266 CY045267 CY045267 CY045267 CY05761 CY005761 CY005761 CY005761 CY005761 CY005761 CY005763 CY005669 CY014640 CY005760 CY014624 CY005666 CY045475 CY045471 CY045473 CY04577 CY045473 CY04577 CY045473 CY045759 CY04568 CY036895 CY036	H1	N6	1977 Aug 2	CY004465	CY004464	CY004463	CY004458	CY004461	CY004460	CY004459	CY004462
H3 N8 1963 CY032300 CY032292 CY032293 CY032296 CY032295 CY032294 CY032297 H3 N5 1999 Oct 7 CY060258 CY060259 CY060260 CY060263 CY060263 CY060264 CY060265 H4 N4 1979 CY06270 CY045269 CY065762 CY014640 CY005760 CY045264 CY05759 CY005760 CY014624 CY005760 CY014624 CY005766 CY005766 CY005760 CY014624 CY005766 CY005766 CY005760 CY014624 CY005766 CY005760 CY014624 CY005766 CY005766 CY014624 CY005766 CY005668 H6 N2 2004 Dec 5 CY045478 CY077418 CY077419 CY077420 CY077421 CY077422 CY077422 CY077423 CY077423 CY07424 H7 N7 1977 CY005811 CY004570 CY005895 CY005895 CY005895 CY005896 CY005868 CY004568 CY004568 CY004568 CY004568 CY004568	H2	N1	1990 Apr 18	CY005420	CY005419	CY005418	CY005413	CY005416	CY005415	CY005414	CY005417
H3 N5 1999 Oct 7 CY060258 CY060259 CY060260 CY060261 CY060262 CY060263 CY060264 CY060265 H4 N4 1979 CY045270 CY045269 CY045268 CY045263 CY045266 CY045266 CY045266 CY045266 CY045266 CY045267 CY005761 CY005761 CY005670 CY005667 CY005667 CY005670 CY045477 CY045471 CY045473 CY045472 CY045475 H6 N1 1979 CY036902 CY036901 CY036900 CY036895 CY036897 CY036896 CY036898 CY036897 CY036896 CY036899 H7 N7 1977 CY036902 CY005731 CY005730 CY014659 CY005829 CY014600 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY005875 CY036898 CY005795 CY036898 CY005795 CY005795 CY005798 CY005795 CY005795 CY005795 CY005795 CY005795	H3	N8	1963	CY032300	CY032299	CY032298	CY032293	CY032296	CY032295	CY032294	CY032297
H4 N4 1979 CY045270 CY045269 CY045268 CY045263 CY045266 CY045265 CY045264 CY045267 H5 N2 1984 Feb 9 CY005764 CY005763 CY005762 CY014640 CY005760 CY014624 CY005766 CY005766 CY005766 CY005667 CY014624 CY005666 CY005668 H6 N1 1979 Jan 1 CY005771 CY005670 CY005670 CY014623 CY005677 CY014624 CY005763 CY045475 CY045473 CY045473 CY045473 CY045473 CY07422 CY077422 CY077422 CY077422 CY077422 CY077422 CY077423 CY077424 H7 N7 1977 CY036902 CY036900 CY036895 CY036898 CY036897 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY036898 CY004576 CY04568 CY04576 CY04568 CY04576 CY004576 CY004576 CY004576 CY004576 CY004576 CY004576 CY004576	H3	N5	1999 Oct 7	CY060258	CY060259	CY060260	CY060261	CY060262	CY060263	CY060264	CY060265
H5 N2 1984 Feb 9 CY005764 CY005763 CY005762 CY014640 CY005760 CY014641 CY005759 CY005761 H6 N1 1979 Jan 1 CY005671 CY005667 CY014623 CY005667 CY014624 CY005666 CY005668 H6 N2 2004 Dec 5 CY045478 CY045477 CY045476 CY045474 CY045473 CY045472 CY045473 CY045472 CY045473 CY045472 CY045473 CY045472 CY045473 CY045472 CY07423 CY077422 CY077422 CY077422 CY077422 CY077423 CY07424 CY036890 CY036900 CY036895 CY005829 CY014660 CY0058868 CY0036895 CY005829 CY014660 CY005795 CY004571 H7 N8 1965 CY004574 CY004573 CY004572 CY004570 CY004569 CY004568 CY004575 CY005795 CY005776 CY005766 </td <td>H4</td> <td>N4</td> <td>1979</td> <td>CY045270</td> <td>CY045269</td> <td>CY045268</td> <td>CY045263</td> <td>CY045266</td> <td>CY045265</td> <td>CY045264</td> <td>CY045267</td>	H4	N4	1979	CY045270	CY045269	CY045268	CY045263	CY045266	CY045265	CY045264	CY045267
H6 N1 1979 Jan 1 CY005671 CY005670 CY005669 CY014623 CY005667 CY014624 CY005666 CY005668 H6 N2 2004 Dec 5 CY045478 CY045477 CY045476 CY045471 CY045473 CY045473 CY045472 CY045475 H7 N1 1934 CY077417 CY077418 CY077419 CY077420 CY077421 CY077422 CY077423 CY077424 H7 N7 1977 CY036902 CY036901 CY005830 CY014659 CY036898 CY036897 CY036896 CY036899 H8 N4 1968 CY005831 CY014622 CY005830 CY014659 CY004570 CY005828 CY014660 CY005828 CY014661 H98 N6 17 CY004574 CY004573 CY004572 CY004570 CY004569 CY004568 CY004571 H10 N8 1965 CY004574 CY004573 CY017770 CY017765 CY017768 CY017767 CY017766 CY005795 CY00579	H5	N2	1984 Feb 9	CY005764	CY005763	CY005762	CY014640	CY005760	CY014641	CY005759	CY005761
H6 N2 2004 Dec 5 CY045478 CY045477 CY045476 CY045471 CY045473 CY045472 CY045475 H7 N1 1934 CY077417 CY077418 CY077419 CY077420 CY077421 CY077422 CY077423 CY077423 CY077424 H7 N7 1977 CY036902 CY036901 CY036900 CY036895 CY036898 CY036897 CY036896 CY036899 H8 N4 1968 CY005831 CY014662 CY005830 CY014659 CY004570 CY04569 CY004568 CY004571 H9 N6 17 CY004574 CY004573 CY004572 CY005934 CY004570 CY004569 CY005796 CY005795 CY005798 H10 N8 1965 CY005800 CY005799 CY014645 CY017765 CY01776 CY01776 CY005795 CY005795 CY005798 H11 N1 1986 Nov 6 CY017772 CY017771 CY017765 CY017768 CY017767 CY017766 CY017767 </td <td>H6</td> <td>N1</td> <td>1979 Jan 1</td> <td>CY005671</td> <td>CY005670</td> <td>CY005669</td> <td>CY014623</td> <td>CY005667</td> <td>CY014624</td> <td>CY005666</td> <td>CY005668</td>	H6	N1	1979 Jan 1	CY005671	CY005670	CY005669	CY014623	CY005667	CY014624	CY005666	CY005668
H7 N1 1934 CY077417 CY077418 CY077419 CY077420 CY077421 CY077422 CY077423 CY077423 CY077424 H7 N7 1977 CY036902 CY036901 CY036900 CY036895 CY036898 CY036897 CY036896 CY036897 CY036896 CY036896 CY036896 CY036896 CY036897 CY036897 CY036896 CY036896 CY036897 CY036896 CY036897 CY036897 CY036896 CY036897 CY036897 CY04561 CY004571 CY04561 CY004571 CY004571 CY005796 CY005796 CY005796 CY005795 CY005798 CY017769 CY017766 CY017766 CY017769 CY017767 CY017766 CY017766 CY017769 CY005734 CY005344 CY005345 CY005345 CY005345 CY005344 CY005344 CY005345 C	H6	N2	2004 Dec 5	CY045478	CY045477	CY045476	CY045471	CY045474	CY045473	CY045472	CY045475
H7 N7 1977 CY036902 CY036901 CY036900 CY036895 CY036898 CY036897 CY036896 CY036899 H8 N4 1968 CY005831 CY014662 CY005830 CY014659 CY005829 CY014660 CY005828 CY014661 H9 N6 17 CY004574 CY004573 CY004572 CY005934 CY004570 CY004569 CY005795 CY005795 CY005798 H10 N8 1965 CY005300 CY005799 CY014645 CY014644 CY005777 CY005796 CY005795 CY005798 H11 N1 1986 Nov 6 CY017772 CY017771 CY017765 CY017768 CY017767 CY005734 CY005345 H12 N1 1983 Aug 6 CY005300 CY003899 CY005348 CY0050606 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY005724 CY005723 CY005792 CY005934 CY003897 CY003896 CY003895 CY003895 CY003895 <t< td=""><td>H7</td><td>N1</td><td>1934</td><td>CY077417</td><td>CY077418</td><td>CY077419</td><td>CY077420</td><td>CY077421</td><td>CY077422</td><td>CY077423</td><td>CY077424</td></t<>	H7	N1	1934	CY077417	CY077418	CY077419	CY077420	CY077421	CY077422	CY077423	CY077424
H8 N4 1968 1988 May CY005831 CY014662 CY005830 CY014659 CY005829 CY014660 CY005828 CY014661 H9 N6 17 CY004574 CY004573 CY004572 CY005934 CY005707 CY004569 CY004568 CY004571 H10 N8 1965 CY005800 CY005799 CY014645 CY014644 CY005797 CY005796 CY005795 CY005798 H11 N1 1986 Nov 6 CY005300 CY007772 CY017770 CY017765 CY017768 CY017767 CY005344 CY005347 H11 N1 1983 Aug 6 CY005300 CY005349 CY005348 CY006006 CY005346 CY005347 CY005347 CY005347 CY005347 CY005347 CY005347 CY005348 CY005014 CY005345 CY005345 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY003901 CY003900 CY003899 CY005914 CY005346 CY005345 CY005795 CY005344 CY005726	H7	N7	1977	CY036902	CY036901	CY036900	CY036895	CY036898	CY036897	CY036896	CY036899
1988 May 1988 May H9 N6 17 CY004574 CY004573 CY004572 CY005934 CY004570 CY004569 CY004568 CY004571 H10 N8 1965 CY005800 CY005799 CY014645 CY014644 CY005797 CY005796 CY005795 CY005798 H11 N1 1986 Nov 6 CY01772 CY017771 CY01776 CY017765 CY017768 CY017767 CY017766 CY017769 H12 N1 1983 Aug 6 CY005300 CY005349 CY005348 CY006006 CY005346 CY005345 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY003901 CY003900 CY003899 CY005914 CY003897 CY003896 CY003895 CY003898 H14 N5 1982 CY130101 CY130100 CY130094 CY130097 CY105719 CY005718 CY005721 H15 N9 1983 CY005724 CY005723 CY005733 CY005735 CY005718 CY0057	H8	N4	1968	CY005831	CY014662	CY005830	CY014659	CY005829	CY014660	CY005828	CY014661
H9 N6 17 CY004574 CY004573 CY004572 CY005934 CY004570 CY004569 CY004568 CY004571 H10 N8 1965 CY005799 CY014645 CY014644 CY005797 CY005796 CY005795 CY005798 H11 N1 1986 Nov 6 CY017772 CY017771 CY017765 CY017768 CY017767 CY017767 CY017766 CY017767 CY005344 CY005347 H12 N1 1983 Aug 6 CY005300 CY005349 CY005348 CY006006 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY03900 CY003899 CY005914 CY003897 CY003896 CY003895 CY003898 H14 N5 1982 CY130101 CY130100 CY130099 CY130094 CY130097 CY130796 CY005718 CY005721 H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY004563 CY017569 CY005718 CY005718 CY005721			1988 May								
H10 N8 1965 CY005800 CY005799 CY014645 CY014644 CY005797 CY005796 CY005795 CY005798 H11 N1 1986 Nov 6 CY017772 CY017771 CY017770 CY017765 CY017768 CY017767 CY017766 CY017769 H12 N1 1983 Aug 6 CY005300 CY005349 CY005348 CY006006 CY005346 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY003901 CY003900 CY03899 CY005914 CY003897 CY03896 CY003895 CY003898 H14 N5 1982 CY130101 CY130090 CY03099 CY130094 CY130097 CY130096 CY130095 CY130098 H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY005719 CY005718 CY005721 H16 N3 16 CY004567 CY103874 CY103875 CY103877 CY103878 CY103879 CY103880 H17 N10	H9	N6	17	CY004574	CY004573	CY004572	CY005934	CY004570	CY004569	CY004568	CY004571
H11 N1 1986 Nov 6 CY017772 CY017771 CY017770 CY017765 CY017768 CY017767 CY017766 CY017769 H12 N1 1983 Aug 6 CY005350 CY005349 CY005348 CY006006 CY005346 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 CY003901 CY003900 CY003899 CY005914 CY003897 CY003896 CY003895 CY003898 H14 N5 1982 CY130101 CY130090 CY130099 CY130094 CY130097 CY130096 CY130095 CY130098 H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY005719 CY005718 CY005721 H16 N3 16 CY004567 CY004565 CY005933 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103877 CY103878 CY103879 CY103888 H17 N10 May 2009	H10	N8	1965	CY005800	CY005799	CY014645	CY014644	CY005797	CY005796	CY005795	CY005798
H12 N1 1983 Aug 6 CY005350 CY005349 CY005348 CY006006 CY005346 CY005345 CY005344 CY005347 H13 N2 1986 Jun 1 1986 Jun 1 CY003901 CY003900 CY003899 CY005914 CY003897 CY003896 CY003895 CY003898 H14 N5 1982 CY130101 CY130100 CY130099 CY130094 CY130097 CY130096 CY130095 CY130098 H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY005720 CY005719 CY005718 CY005721 1988 May H16 N3 16 CY004567 CY004566 CY004565 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 C	H11	N1	1986 Nov 6	CY017772	CY017771	CY017770	CY017765	CY017768	CY017767	CY017766	CY017769
H13 N2 1986 Jun 1 CY003901 CY003900 CY003899 CY005914 CY003897 CY003896 CY003895 CY003895 CY003898 H14 N5 1982 CY130101 CY130100 CY130099 CY130094 CY130097 CY130096 CY130095 CY130098 H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY005720 CY005719 CY005718 CY005721 1988 May H16 N3 16 CY004567 CY004566 CY004565 CY005933 CY004563 CY014569 CY004562 CY004564 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103884 CY103885 CY103886 CY103889 CY103886 CY10	H12	N1	1983 Aug 6	CY005350	CY005349	CY005348	CY006006	CY005346	CY005345	CY005344	CY005347
H14 N5 1982 CY130101 CY130100 CY130099 CY130094 CY130097 CY130096 CY130095 CY130098 H15 N9 1983 1983 CY005724 CY005723 CY005722 CY006033 CY005720 CY005719 CY005718 CY005721 H16 N3 16 CY004567 CY004566 CY004565 CY005933 CY004563 CY014569 CY004562 CY004564 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 CY103886 CY103886 CY103886 CY103894 CY103895 CY103896 H17 N10 Sep 2010 CY103889 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896	H13	N2	1986 Jun 1	CY003901	CY003900	CY003899	CY005914	CY003897	CY003896	CY003895	CY003898
H15 N9 1983 CY005724 CY005723 CY005722 CY006033 CY005720 CY005719 CY005718 CY005721 1988 May 16 CY004567 CY004566 CY004565 CY005933 CY004563 CY014569 CY004562 CY004564 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 CY103887 CY103888 H17 N10 Sep 2010 CY103889 CY103890 CY103891 CY103893 CY103894 CY103895 CY103896	H14	N5	1982	CY130101	CY130100	CY130099	CY130094	CY130097	CY130096	CY130095	CY130098
1988 May 1988 May H16 N3 16 CY004567 CY004566 CY004565 CY005933 CY004563 CY014569 CY004562 CY004564 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 CY103887 CY103888 H17 N10 Sep 2010 CY103889 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896	H15	N9	1983	CY005724	CY005723	CY005722	CY006033	CY005720	CY005719	CY005718	CY005721
H16 N3 16 CY004567 CY004566 CY004565 CY004563 CY014569 CY004562 CY004564 H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 CY103887 CY103888 H17 N10 Sep 2010 CY103889 CY103890 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896			1988 May								
H17 N10 May 2009 CY103873 CY103874 CY103875 CY103876 CY103877 CY103878 CY103879 CY103880 H17 N10 May 2009 CY103881 CY103882 CY103883 CY103885 CY103886 CY103887 CY103888 H17 N10 Sep 2010 CY103889 CY103890 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896	H16	N3	16	CY004567	CY004566	CY004565	CY005933	CY004563	CY014569	CY004562	CY004564
H17 N10 May 2009 CY103881 CY103882 CY103883 CY103884 CY103885 CY103886 CY103887 CY103888 H17 N10 Sep 2010 CY103889 CY103890 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896	H17	N10	May 2009	CY103873	CY103874	CY103875	CY103876	CY103877	CY103878	CY103879	CY103880
H17 N10 Sep 2010 CY103889 CY103890 CY103891 CY103892 CY103893 CY103894 CY103895 CY103896	H17	N10	May 2009	CY103881	CY103882	CY103883	CY103884	CY103885	CY103886	CY103887	CY103888
	H17	N10	Sep 2010	CY103889	CY103890	CY103891	CY103892	CY103893	CY103894	CY103895	CY103896
H18 N11 2010 CY125942 CY125943 CY125944 CY125945 CY125946 CY125947 CY125948 CY125949	H18	N11	2010	CY125942	CY125943	CY125944	CY125945	CY125946	CY125947	CY125948	CY125949
H18 N11 2012 Mar 7 MH682200 MH682201 MH682202 MH682203 MH682204 MH682205 MH682206 MH682207	H18	N11	2012 Mar 7	MH682200	MH682201	MH682202	MH682203	MH682204	MH682205	MH682206	MH682207
H18 N11 2012 Mar 12 MH682208 MH682210 MH682211 MH682212 MH682213 MH682214 MH682215	H18	N11	2012 Mar 12	MH682208	MH682209	MH682210	MH682211	MH682212	MH682213	MH682214	MH682215

Appendix Table 2. Representative viruses used in phylogenetic analysis of Brazilian bat influenza A (HL18NL11) virus

*The influenza B strain used as an outgroup was B/Lee/1940 (accession numbers DQ792894–901).