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Appendix 

(A) Simulation Model 

The model equations for a single city are given by 
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where i(t) denotes the number of new infected persons on day t and is determined by the 

Poisson random variable X(t) with mean μ = S(t)p(t). Here, 
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is the probability on day t of a given susceptible person becoming infected. This equation 

corresponds to an illness with total infection period of D days and a varying degree of 

infectivity ρ(τ) over the course of each infection. Note that τ = 0, 1,…, D-1, and Σρ(τ) = 1. 

Multiple cities are accommodated by introducing a pair of labels to indicate a 

person’s city of origin and destination as well as a rate of travel Akl from city k to city l per 

day. The situations considered in this article involve only 2 cities, with just 2 rates of travel, 

A12 and A21. We set A12  ≡  A1 and A21 ≡ A2, for convenience. The epidemic equations for city 

1 become 
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Here, X1(t) is a Poisson random variable with mean μ1(t) = S1(t)[A1 p2(t) + (1- A1)p1(t)], 

where p1(t) is given by 
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Note that the equations for city 2 and p2(t) can be obtained by replacing the label 1 

with 2 and vice versa in the previous 2 equations. 

The sensitivity of the results to the assumption that all infected persons travel can be 

tested by making an optimistic assumption that two thirds of infected persons are 

symptomatic and do not travel. This leads to an additional median delay of between 2 days 

(reproduction number R0 = 3.5, peaked infectivity) and 11 days (R0 = 1.5, flat infectivity) if 

applied to infections acquired while a person is at home or traveling. If, however, one 

assumes that persons infected while traveling would return home, then the delay is less 

significant, 1–4 days in scenario 1 and 0–1 days in scenario 2. 

(B) Simple Model in Continuous Time 

A simpler deterministic model for the infected persons is used to analyze differences 

in rates of travel on a single route. If we consider only the early stages of the epidemic, well 

before the peak, then the number of susceptible persons is approximately equal to the total 

population. The epidemic equations then reduce to the pair of coupled, linear ordinary 

differential equations that describe the change in the number of infected persons over time: 
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where β is the effective contact rate, 1/γ is the average duration of infection, η is the 

population of city 1 divided by the population in city 2, A1 and A2 are the travel rates from 

city 1 to city 2 and vice versa, and φ+ and φ− are population modifiers due to travel, with 

definitions 
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Symbolically, the solution to these equations can be written as 
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When susceptible persons are prevented from traveling, this matrix simplifies to the form 
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while in the absence of travel by infected persons, it can be expressed as 
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Although the equations for the time to spread can be written in analytic form, a numerical 

solution is required, and hence the MATLAB (The MathWorks, Natick, MA, USA) function 

fsolve is used to compute the solutions graphed in the Appendix Figure panel A. 

(C) Dependence on Origin of Travelers and City Size 

The dependence on these factors can be studied more generally in terms of differences 

in population size and travel rates by using the above deterministic version of the stochastic 

model used in simulations. In this context, T20, the time between the days on which the 

number of infected persons first reached 20 in city 1 and first reached 20 in city 2, is no 

longer random. In Figure panel A, the effect on T20 of varying the city 1/city 2 population 

ratio (η) is graphed (assumptions are that the city 1/city2 travel rates are equal, with R0 = 1.5, 

a 6-day infection period, and the epidemic beginning in city 1). The solid curves show that 

the delay in epidemic spread increases noticeably as the size of city 1 increases in comparison 

to city 2. Figure panel B explores the effect of differences in the ratio of city 1/city 2 travel 

rates for 3 different city population ratios (η = 1, 1/10, and 10) and shows that this factor can 

also strongly influence T20. 

A better understanding of the effect of city size ratio on T20 is obtained by “switching 

off” the travel of infected persons or, alternatively, susceptible persons in the model. 

Switching off travel by susceptible persons implies that disease can only spread through the 

movement of infected persons from city 1 to city 2. Since the ratio, η, does not alter the 

average number of infections per infectious person (R0), it should not influence the delay in 

intercity spread if susceptible persons do not travel. The dashed line in Figure panel A 

confirms this prediction. If, however, only susceptible persons can initiate journeys, then the 

disease can only move from city 1 to city 2 through susceptible persons from city 2 acquiring 

the infection in city 1 before returning to city 2. The ratio of city sizes ought to be important 

in this instance because the risk of acquiring infection from a single infected person is 

inversely proportional to the size of the population. This effect is apparent from the dotted 

line in Figure panel A, with T20 increasing linearly with log(η) for all but very small values of 

the variable. 
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(D) Analytic Approximations 

The effect of travel restrictions can be approximated in terms of the initial growth 

rate, r, of the epidemic as Tp = 0.99 = log(100)/r, for 99% restrictions and similarly for other 

levels of travel restriction. The time taken to reach 20 cases can be used to estimate r, and in 

fact, we can re-express Tp by using this time: Tp = 0.99 = T20*log(100)/log(20). In practice, 

estimates based on T20 can be somewhat inaccurate for low values of R0 (Figure panel D). 

The probability of an outbreak spreading from city 1 to city 2, as described by the 

simulation model above, can be approximated by using extinction probabilities for branching 

processes (1). If, over the course of an outbreak, an attack rate, AR, occurs in the source 

region, then with N visitors in town A per day and N citizens of town A visiting the source 

region, the probability of an outbreak occurring is 

),)1(2exp(1 0RARqNpA −−−≈   (10) 

where q is the extinction probability for a Poisson branching process with mean R0. As is 

seen in Figure panel C, where AR ≈ (1–q), this approximates the simulation model very well. 
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Appendix Figure. A) T20 (the time between the days on which the number of infected persons first 

reached 20 in city 1 and first reached 20 in city 2) (now deterministic) for reproduction number R0 = 

1.5 and 6-day duration of infection, when the city size ratio, η = N1/N2, is varied. The epidemic is 

assumed to begin with 1 infectious person in city 1. Travel rates are equal (A1 = A2) with A1 = 1/1,000; 

solid, dotted, and dashed lines correspond to persons being free to travel, independent of disease 

state, only susceptible and removed persons traveling, and only infected persons traveling, 

respectively. B) Persons are free to travel regardless of disease state, with A1 = 1/1,000, but the 

reverse travel rate is varied. Solid, dotted, and dashed curves correspond to η = 1, 10, and 1/10, 

respectively. C) Probability of the outbreak spreading to city 2 as travel volume increases, with 

markers indicating results from simulations and curves from the analytic approximation. D) the 

analytic formula for effect of travel restrictions is compared with simulations of scenario 1 (an outbreak 

beginning in Sydney and spreading to Melbourne) by using the flat infectivity function. Horizontal axes 

are on a log-scale, and the legend in panel C also refers to panel D. 

 


